中考数学几何综合题 .doc
《中考数学几何综合题 .doc》由会员分享,可在线阅读,更多相关《中考数学几何综合题 .doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、几何综合题复习几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。一、几何论证型综合题例1、(盐城)如图,已知:O1与O2是等圆,它们相交于A、B两点,O2在O1上,AC是O2的直径,直线CB交O1于D,E为AB延长线上一点,连接DE。(1)请你连结AD,证明:AD是O1的直径;(2)若E=60,求证:DE是O1的切线。分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。证明:(1)连接AD,AC是O2的直径,ABDCABD=90,AD是O1的直径(2)证法一
2、:AD是O1的直径,O1为AD中点连接O1O2,点O2在O1上,O1与O2的半径相等,O1O2=AO1=AO2AO1O2是等边三角形,AO1O2=60由三角形中位线定理得:O1O2DC,ADB=AO1O2=60ABDC,E=60,BDE=30,ADE=ADB+BDE=60+30=90又AD是直径,DE是O1的切线证法二:连接O1O2,点O2在O1上,O1与O2的半径相等,点O1在O2O1O2=AO1=AO2,O1AO2=60AB是公共弦,ABO1O2,O1AB=30E=60ADE=180-(60+30)=90由(1)知:AD是的O1直径,DE是O1的切线.说明:本题考查了三角形的中位线定理、圆
3、有关概念以及圆的切线的判定定理等。练习一1如图,梯形ABCD内接于O,ADBC,过点C作O的切线,交BC的延长线于点P,交AD的延长线于点E,若AD=5,AB=6,BC=9。求DC的长;求证:四边形ABCE是平行四边形。ABCDOP图5122已知:如图,AB是O的直径,点P在BA的延长线上,PD切O于点C,BDPD,垂足为D,连接BC。求证:(1)BC平分PBD;(2)3PC切O于点C,过圆心的割线PAB交O于A、B两点,BEPE,垂足为E,BE交O于点D,F是PC上一点,且PFAF,FA的延长线交O于点G。求证:(1)FGD2PBC;(2).4.已知:如图,ABC内接于O,直径CDAB,垂足
4、为E。弦BF交CD于点M,交AC于点N,且BF=AC,连结AD、AM,求证:(1)ACMBCM; (2)ADBE=DEBC;(3)BM2=MNMF。5.已知:如图,ABC中,ACBC,以BC为直径的O交AB于点D,过点D作DEAC于点E,交BC的延长线于点F求证:(1)ADBD;(2)DF是O的切线二、几何计算型综合题解这类几何综合题,应该注意以下几点:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,或通过添加辅助线补全或构造基本图形;(2)灵活运用数学思想与方法.(例2题)ABCDEOF例2如图,矩形ABCD的对角线AC、BD相交于点O,E、F分别是OA、OB的中点 (1)求证:A
5、DEBCF;(2)若AD = 4cm,AB = 8cm,求CF的长解:(1)四边形ABCD为矩形,ADBC,OAOC,OBOD,ACBD, ADBC, OAOBOC,DAEOCB,OCBOBC,DAECBF 又AEOA,BFOB,AEBF, ADEBCF AB(例2)CDEOFG (2)解:过点F作FGCD于点G,则DGF90,DCB90,DGFDCB,又FDGBDC,DFGDBC, 由(1)可知DF3FB,得, ,FG3,DG6, GCDCDG862 在RtFGC中,.说明:本题目考查了矩形的性质,三角形全等的判定以及相似三角形的判定及性质。练习二1.已知:如图,直线PA交O于A、E两点,P
6、A的垂线DC切O于点C,过A点作O的直径AB。(1)求证:AC平分DAB;(2)若DC4,DA2,求O的直径。2已知:如图,以RtABC的斜边AB为直 径作O,D是O上的点,且有AC=CD。过点C作O的切线,与BD的延长线交于点E,连结CD。 (1)试判断BE与CE是否互相垂直?请说明理由;(2)若CD=2,tanDCE=,求O的半径长。3如图,AB是O的直径,BC是O的切线,D是O上的一点,且ADCO。(1)求证:ADBOBC;(2)若AB=2,BC=,求AD的长。(结果保留根号)4如图,是的角平分线, 延长交的外接圆于点,过三点的圆交的延长线于点,连结(1)求证:;(2) 若, 求的长;(
7、3) 若, 试判断的形状,并说明理由5如图,已知四边形ABCD内接于O,A是的中点,AEAC于A,与O及CB的延长线分别交于点F、E,且,EM切O于M。ADCEBA;AC2BCCE;如果AB2,EM3,求cotCAD的值。能力提高1、如图矩形ABCD中,过A,B两点的O切CD于E,交BC于F,AHBE于H,连结EF。(1) 求证:CEFBAH(2) 若BC2CE6,求BF的长。2如图,O的弦AB=10,P是弦AB所对优弧上的一个动点,tanAPB=2, (1)若APB为直角三角形,求PB的长;(2)若APB为等腰三角形,求APB的面积。3.如图l,已知正方形ABCD的对角线AC、BD相交于点O
8、,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由 4如图11,在ABC中,ABC90,AB6,BC8。以AB为直径的O交AC于D,E是BC的中点,连接ED并延长交BA的延长线于点F。(1)求证:DE是O的切线;(2)求DB的长;(3)求SFADSFDB的值5已知:ABCD的对角线交点为O,点E、F分别在边AB、CD上,分别沿DE、BF折叠四边形ABCD, A、C两点恰好都落在O点处,且
9、四边形DEBF为菱形(如图)OFDBECA求证:四边形ABCD是矩形;在四边形ABCD中,求的值6如图,AB是O的直径,点C在BA的延长线上,CA=AO,点D在O上,ABD=30求证:CD是O的切线;ABDCEOP若点P在直线AB上,P与O外切于点B,与直线CD相切于点E,设O与P的半径分别为r与R,求的值7、知直线L与相切于点A,直径AB=6,点P在L上移动,连接OP交于点C,连接BC并延长BC交直线L于点D.(1)若AP=4,求线段PC的长;(4分)(2)若PAO与BAD相似,求APO的度数和四边形OADC的面积.(答案要求保留根号)8、如图7,已知BC是O的直径,AHBC,垂足为D,点A
10、为的中点,BF交AD于点E,且BEEF=32,AD=6.(1) 求证:AE=BE;(2) 求DE的长;(3) 求BD的长 .9、如图1:O的直径为AB,过半径OA的中点G作弦CEAB,在上取一点D,分别作直线CD、ED交直线AB于点F、M。(1)求COA和FDM的度数;(2)求证:FDMCOM;(3)如图2:若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M,试判断:此时是否仍有FDMCOM?证明你的结论。 10、已知:如图12,在直角梯形ABCD中,ADBC,BC5cm,CD6cm,DCB60,ABC90。等边三角形MPN(N为不动点)的边长为cm
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考数学几何综合题 中考 数学 几何 综合
限制150内