二次函数应用题专题训练 .doc
《二次函数应用题专题训练 .doc》由会员分享,可在线阅读,更多相关《二次函数应用题专题训练 .doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数应用题专题训练知识要点:二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值)即当时,函数有最小值,并且当,;当时,函数有最大值,并且当,如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内随的增大而增大,则当时,当时,;如果在此范围内随的增大而减小,则当时,当时,在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要
2、讨论的最值问题。求最值的问题的方法归纳起来有以下几点:1运用配方法求最值;2构造一元二次方程,在方程有解的条件下,利用判别式求最值;3建立函数模型求最值;4利用基本不等式或不等分析法求最值例1:求下列二次函数的最值:(1)求函数的最值解:当时,有最小值,无最大值 (2)求函数的最值 解:,对称轴为当例2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件元,利润为元,为涨价时的利润,为降价时的利润则: 当,即:定价为65元时,(元) 当
3、,即:定价为57.5元时,(元)综合两种情况,应定价为65元时,利润最大练习:1某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件如何提高售价,才能在半个月内获得最大利润?解:设每件价格提高元,利润为元,则: 当,(元)答:价格提高5元,才能在半个月内获得最大利润2某旅行社组团去外地旅游,30人起组团,每人单价800元旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?解:设旅行团有人,
4、营业额为元,则: 当,(元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额x(元)152030y(件)252010例3: 某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量(件)之间的关系如下表: 若日销售量是销售价的一次函数 求出日销售量(件)与销售价(元)的函数关系式; 要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:设一次函数表达式为则 解得,即一次函数表达式为 设每件产品的销售价应定为元,所获销售利润为元 当,(元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元 【点评】解决最值问题应用题的思路与一般应用题类
5、似,也有区别,主要有两点:在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;求解方法是依靠配方法或最值公式,而不是解方程3(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克由销售经验知,每天销售量(千克)与销售单价(元)()存在如下图所示的一次函数关系式 试求出与的函数关系式; 设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该
6、超市确定绿色食品销售单价的范围(直接写出答案)解:设y=kx+b由图象可知,即一次函数表达式为 P有最大值当时,(元)(或通过配方,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元 31x34或36x394(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x(元/千克) 25 24 23 22销售量y(千克)2000250030003500 (1)在如图的直角坐标系内,作出各组有序数对(x,y)所对应的点连接各点并观察所得的图形,判断y与x之间的函数关系,并求出y与x之
7、间的函数关系式;(2)若樱桃进价为13元/千克,试求销售利润P(元)与销售价x(元/千克)之间的函数关系式,并求出当x取何值时,P的值最大?解:(1)由图象可知,y是x的一次函数,设y=kx+b,点(25,2000),(24,2500)在图象上, ,y=-500x+14500(2)P=(x-13)y=(x-13)(-500x+14500)=-500(x-21)2+32000P与x的函数关系式为P=-500x2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元5有一种螃蟹,从海上捕获后不放养,最多只能存活两天如果放养在塘内,可以延长存活时间,但每天也有
8、一定数量的蟹死去假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q收购总额)?解:(1)由题意知:p=30+x,(2)由题意知:活蟹
9、的销售额为(100010x)(30+x)元,死蟹的销售额为200x元.Q=(100010x)(30+x)+200x=10x2+900x+30000.(3)设总利润为W元则:W=Q100030400x=10x2+500x=10(x250x) =10(x25)2+6250.当x=25时,总利润最大,最大利润为6250元答:这批蟹放养25天后出售,可获最大利润6(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克市场调查发现,该产品每天的销售量(千克
10、)与销售价(元/千克)有如下关系:=280设这种产品每天的销售利润为(元) (1)求与之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?解: 当,(元)(1)与之间的的函数关系式为;(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元(3) ,(不合题意,舍去)答:该农户想要每天获得150元的销售利润,销售价应定为25元7(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第
11、一年的年产量为(吨)时,所需的全部费用(万元)与满足关系式,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系(注:年利润年销售额全部费用)(1)成果表明,在甲地生产并销售吨时,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;(2)
12、在乙地区生产并销售时,年利润由,解得或经检验,不合题意,舍去,(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元),应选乙地例4:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cms的速度移动,同时点Q从点B出发沿BC边向点C以2cms的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动(1)运动第t秒时,PBQ的面积y(cm)是多少?(2)此时五边形APQCD的面积是S(cm),写出S与t的函数关系式,并指出自变量的取值范围(3)t为何值时s最小,最小值时多少?答案:例2:小明的家门前有一块空地,空地外有一面长10米
13、的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质)花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为米,面积为平方米则长为:(米)则: ,与的二次函数的顶点不在自变量的范围内,而当内,随的增大而减小,当时,(平方米)答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大例5:已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1试在AB上求一点P,使矩形PNDM有最大面积 解:设矩形PNDM的边DN
14、=x,NP=y,则矩形PNDM的面积S=xy(2x4)易知CN=4-x,EM=4-y过点B作BHPN于点H则有AFBBHP,即,此二次函数的图象开口向下,对称轴为x=5,当x5时,函数值随的增大而增大,对于来说,当x=4时,【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力同时,也给学生探索解题思路留下了思维空间例6:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,CFE、ABE和四边形AEFD均由单一材料制成,制成CFE、ABE和四边形AEFD的三种材料的每平方米价格依次为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数应用题专题训练 二次 函数 应用题 专题 训练
限制150内