专题由递推关系求数列的通项公式含答案 .doc
《专题由递推关系求数列的通项公式含答案 .doc》由会员分享,可在线阅读,更多相关《专题由递推关系求数列的通项公式含答案 .doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题 由递推关系求数列的通项公式一、目标要求通过具体的例题,掌握由递推关系求数列通项的常用方法:二、知识梳理 求递推数列通项公式是数列知识的一个重点,也是一个难点,高考也往往通过考查递推数列来考查学生对知识的探索能力,求递推数列的通项公式一般是将递推公式变形,推得原数列是一种特殊的数列或原数列的项的某种组合是一种特殊数列,把一些较难处理的数列问题化为熟悉的等差或等比数列。三、典例精析1、公式法:利用熟知的公式求通项公式的方法称为公式法。常用的公式有及等差数列和等比数列的通项公式。例1 已知数列中,求数列的通项公式评注 在运用时要注意条件,对n=1要验证。2、累加法:利用恒等式求通项公式的方法叫
2、累加法。它是求型如的递推数列的方法(其中数列的前n项和可求)。 例2 已知数列中,求数列的通项公式 评注 此类问题关键累加可消中间项,而可求和则易得3、.累乘法:利用恒等式求通项公式的方法叫累乘法。它是求型如的递推数列的方法 例3 已知数列中 ,求数列的通项公式评注 此类问题关键是化,且式子右边累乘时可求积,而左边中间项可消。 4、转化法:通过变换递推关系,将非等差(等比)数列转化为等差或等比有关的数列而求得通项公式的方法称为转化法。常用的转化途径有: 凑配、消项变换如将一阶线性递推公式(q, d为常数,)通过凑配变成=,或消常数项转化为例4、已知数列中,求数列的通项公式点评: 此类问题关键是
3、利用配凑或消项变换将其转化为等比数列 (2)倒数变换如将一阶分式递推公式(c,d为非零常数)取倒数得 例5 已知数列中,求数列的通项公式点评: 此类问题关键是取倒数使其转化为一阶线性递推数列然后可用凑配、消项变换。对数变换如将一阶分式递推公式取对数可得 例6 已知数列中,且,求数列的通项公式 点评:此类问题关键是取对数使其转化为关于的对数的一阶线性递推数列即可用凑配、消项变换 换元变换如将一阶分式递推公式(q,d为非零常数,q1,d1)变换成,令,则转化为一阶线性递推公式 例7在数列中,求数列的通项公式评注:此类问题关键是通过换元将其转化为一阶线性递推公式5、待定系数法 递推公式为(其中p,q
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题由递推关系求数列的通项公式含答案 专题 关系 数列 公式 答案
限制150内