一元一次方程培优讲义自编 .doc
《一元一次方程培优讲义自编 .doc》由会员分享,可在线阅读,更多相关《一元一次方程培优讲义自编 .doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一元一次方程培优讲义 #年级#性别#教学课题一元一次方程培优教学目标知识点:考 点:方 法:讲解和练习重点难点教学重点;教学难点;课前检查作业完成情况:优 良 中 差 建议_教学内容一元一次方程复习提高要点一:方程及一元一次方程的相关概念方程的概念:含有未知数的等式叫做方程。一元一次方程的概念:方程两边都是整式,只含有一个未知数,并且未知数的指数是一次的方程叫做一元一次方程。其中“元”是指未知数,“一元”是指一个未知数;“次”是指含有未知数的项的最高次数,“一次”是指含有未知数的项的最高次数是一次。等式、方程、一元一次方程的区别和联系:区别举例联系等式用等号连接的式子。3+2=5,x+1=0都
2、是用等号连接的式子方程含有未知数的等式。X+1=0,x+y=2一元一次方程方程两边都是整式,只含有一个未知数并且未知数的指数是一次的方程。X+1=0,y+1=y方程的解的概念:使方程两边相等的未知数的值叫做方程的解。(1) 解方程的概念:求方程的解或判定方程无解的过程叫做解方程。(2) 判断一个未知数的值是不是方程的解:将未知数的值代入方程,看左右两边的值是否相等,能使方程左右两边相等的味之素的值就是方程的解。否则就不是方程的解。一元一次方程的解法解一元一次方程的一般步骤、注意点、基本思路。一般步骤注意点(1)去分母方程的每一项都要乘以最简公分母(2)去括号去掉括号,括号内的每项符号都要同时变
3、或不变(3)移项移项要变号(4)合并同类项只要把系数合并,字母和它的指数不变。(5)方程两边同除以未知数的系数相除时系数不等于0。若为0,则方程可能无解或有无穷多解。重点题型总结及应用知识点一:一元一次方程的概念例1、 已知下列各式:2x51;871;xy;xyx2;3xy6;5x3y4z0;8;x0。其中方程的个数是()A、5B、6C、7D、8举一反三:【变式1】判断下列哪些方程是一元一次方程: (1)-2x2+3=x (2)3x-1=2y (3)x+=2 (4)2x2-1=1-2(2x-x2)【变式2】若关于的方程是一个一元一次方程,则_【变式3】若关于的方程是一元一次方程,则_【变式4】
4、若关于的方程是一元一次方程,则_【变式5】若关于的方程是一元一次方程,则_【变式6】已知:(a3)(2a5)x(a3)y60是关于x的一元一次方程,则a=_知识点二:方程的解 题型一:已知方程的解,求未知常数例2、当取何值时,关于的方程的解为?举一反三:已知(1)当时,求的值;(2)当时,求的值题型二:已知一方程的解,求另一方程的解例3、已知是关于的方程的解,解关于的方程:题型三:同解问题例4、方程与的解相同,求的值.举一反三:【变式1】已知方程与方程的解相同(1)求的值;(2)求代数式的值【变式2】已知方程与方程的解相同,求k 的值.【变式3】方程的解与关于x的方程的解互为倒数,求k的值。题
5、型四:已知方程解的情况,求未知常数的取值范围例5、要使方程ax=a的解为1,则( )A.a可取任何有理数 B.a0 C. a0 D.a0例6、关于x的方程ax+3=4x+1的解为正整数,则a的值为( )A. 2 B. 3 C.1或2 D.2或3举一反三:已知方程2ax=(a1)x+6,求a为何整数时,方程的解是正整数.知识点三:等式的性质(方程变形解方程的重要依据)注:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为 ,如方程:=1.6,将其化为: =1.6。方程的右边没有变化,这要与“去分母”区别开。例7、下列等式变形正确的是( )A.若,则 B. 若,则C.若,则 D
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元一次方程培优讲义自编 一元一次方程 讲义
限制150内