一次函数题型总结 .doc
《一次函数题型总结 .doc》由会员分享,可在线阅读,更多相关《一次函数题型总结 .doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一次函数题型总结函数定义1、判断下列变化过程存在函数关系的是( )A.是变量, B.人的身高与年龄 C.三角形的底边长与面积 D.速度一定的汽车所行驶的路程与时间2、已知函数,当时,= 1,则的值为( )A.1 B.1 C.3 D.3、下列各曲线中不能表示y是x的函数是()。OxyOxyOxyOxy正比例函数1、下列各函数中,y与x成正比例函数关系的是(其中k为常数)( ) A、y=3x2 B、y=(k+1)x C、y=(|k|+1)x D、y= x22、如果y=kx+b,当 时,y叫做x的正比例函数3、一次函数y=kx+k+1,当k= 时,y叫做x正比例函数一次函数的定义1、下列函数关系中,
2、是一次函数的个数是( )y= y= y=210x y=x22 y=+1A、1 B、2 C、3 D、42、若函数y=(3m)xm -9是正比例函数,则m= 。3、当m、n为何值时,函数y=(5m3)x2-n+(m+n)(1)是一次函数 (2)是正比例函数一次函数与坐标系1.一次函数y=2x+4的图象经过第 象限,y的值随x的值增大而 (增大或减少)图象与x轴交点坐标是 ,与y轴的交点坐标是2. 已知y+4与x成正比例,且当x=2时,y=1,则当x=3时,y=3.已知k0,b0,则直线y=kx+b不经过第象限4、若函数y=x+m与y=4x1的图象交于y轴上一点,则m的值是()A. B. C. D.
3、 5.如图,表示一次函数ymx+n与正比例函数y=mnx(m,n是常数,且 mn0)图像的是( ).6、已知一次函数的图象如图1所示,那么的取值范围是( )图1ABCD7一次函数y=kx+(k-3)的函数图象不可能是( )待定系数法求一次函数解析式1.已知直线经过点(1,2)和点(3,0),求这条直线的解析式.2.如图,一次函数y=kx+b的图象经过A、B两点,与x轴相交于C点求: (1)直线AC的函数解析式; (2)设点(a,2)在这个函数图象上,求a的值; 2、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭
4、碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?Oy(千米)x(小时)y1y21232.547.5P4、东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段、分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系。试用文字说明:交点P所表示的实际意义。试求出A、B两地之间的距离。函数图像的平移1.把直线向上平移3个单位所得到的直线的函数解析式为2、(2007浙江湖州)将直线y2x向右平移2个单位所得的直线的解析式是( )。A、y2x2 B、y2x2 C、y2(x2) D、y2(x
5、2)3、将函数y6x的图象向上平移5个单位得直线,则直线与坐标轴围成的三角形面积为 .4、在平面直角坐标系中,将直线向下平移4个单位长度后。所得直线的解析式为 函数的增减性1、已知点A(x1,y1)和点B(x2,y2)在同一条直线y=kx+b上,且k0若x1x2,则y1与y2的关系是()A.y1y2B.y1=y2C.y1y2D.y1与y2的大小不确定2、已知一次函数的图象交轴于正半轴,且随的增大而减小,请写出符合条件的一个解析式:.3、写出一个y随x的增大而增大的一次函数的解析式: .4、在一次函数中,随的增大而 ,当 时,y的最小值为.函数图像与坐标轴围成的三角形的面积1、函数y=-5x+2
6、与x轴的交点是 与y轴的交点是 与两坐标轴围成的三角形面积是 。2.已知直线y=x+6与x轴、y轴围成一个三角形,则这个三角形面积为 _ 。3、已知:在直角坐标系中,一次函数y=的图象分别与x轴、y轴相交于A、B.若以AB为一边的等腰ABC的底角为30。点C在x轴上,求点C的坐标.4、(2010北京)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B. 求A,B两点的坐标; 过B点作直线BP与x轴相交于P,且使OP=2OA, 求ABP的面积.5在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.(1)求函数yx3的坐标三角形的三条边长; (2)若函数yxb
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次函数题型总结 一次 函数 题型 总结
限制150内