《高中数学解题的思维策略》 .doc
《《高中数学解题的思维策略》 .doc》由会员分享,可在线阅读,更多相关《《高中数学解题的思维策略》 .doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、高中数学解题的思维策略很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,昨天下午坐了24个小时的火车过来,误了4天的课程,最后咱们下午物理上完之后再给大家补课,再给大家补5天的课程, 去年高考难,很多学生数学考得也很不错,很多人可能会问补课有用吗。给大家举个例子,那几年留学很流行,大家可能会说,留学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高考中分数的重要性,我姐是个老师,我姐经常说孩子们考好了,家长就说,考不好,家长就说老师和郭师哥教的不好,实际上主体还是我们学生,次要的才是老师,家长,环境,据去年那批学生反映
2、最后对我们3个教的还不错,我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多好题;很多我归纳的知识和一些数学技巧;在最后2天我要给大家讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下一些英语,语文和其他科目的技巧。导 读数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考120分钟,12道选择,4
3、道填空,基本用时不超过50分钟,选这题一般最后2个比较难,填空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第2道大题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确率也不高了,整个考试最后也可想而知。应该怎么办呀,先做会的,把整个卷子会做的做完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了,也会给分。) 根据题设的相关知识,提出灵活设想和解题方案二、数学思维的反思性 (大家以后会遇到很多你不会的题,也会遇到很多你会但是做错了的但是又拿很少分的题,大家错了后又该怎么办呢,改错本的应用,改错本的技巧,应该记下什么样的错题或者
4、什么样的题,举例比如我高考前有一段时间发现我计算老是出问题,因为计算老是丢分,而且还丢不少分,物理也是,那该怎么办呢,考试卷子后面答案练习计算能力,不但数学计算能力提高,物理也提高,(物理比如说磁场和能量那很多计算题,),一举两得,分析原因,是计算问题,还是粗心问题,还是基础知识掌握不牢固,公式没记住,都要对每一道错题反思)提出独特见解,检查思维过程,不盲从、不轻信。三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。五数学思维的归纳总结性在日后的学习中也会交给大家对一些常用如对数例,解析几何(解释),等很多的举例,也会在日后交给大家一些高考的答题技巧。六学习习惯的培养我感觉任何一个
5、想学好考好的学生,习惯是很重要的,去年有几个学生我感觉挺聪明的,但是最后考的不理想,平时老是玩手机,玩,玩空间,什么样的角色做什么样的事。还有上课该怎么利用,有些同学感觉上课老师讲的知识点我下来再记,主要的时间还是在课堂,能在课堂记住的课堂一定要记住,大家肯定有学习好一点的,也有不好一点的,大家到这的目的只有一个,那就是来学习了,平时学习要坚持,谁坚持到最后谁笑的最美,有不会的就要问,七考试的心态。不是先告诉大家要自信,在考场上我感觉最重要的要有一种紧迫感但是又不慌(就好像有人在后面催的你了),举例,接下来的才是自信。(万万不可因为有点成绩就骄傲,大家眼光一定要放远,你的竞争对手是宣化一中,张
6、家口一中,很水一中,咱们阳原一中有个特点,我感到很不可思议,就是每年高考前半个月或者一个星期,学校就给大家放假,我看去年补课的学生,很多块高考呀,都开始照相,玩,转呀,直到高考最后移门大家那颗紧绷心都不能放下)第一讲 数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性善于根据题设的相关知识,提出灵活的设想和解题方案。根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察 心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。观察是认识事物最基本的途
7、径,它是了解问题、发现问题和解决问题的前提。任何一道数学题,都包含一定的数学条件和关系。要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。例如,求和.这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且,因此,原式等于问题很快就解决了。(2)善于联想 联想是问题转化的桥梁。稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。例如,解方程组.这个方程指明两个数的和
8、为,这两个数的积为。由此联想到韦达定理,、是一元二次方程 的两个根,所以或.可见,联想可使问题变得简单。(3)善于将问题进行转化数学家G . 波利亚在怎样解题中说过:数学解题是命题的连续变换。可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重要的思维方法。那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具体特征,联想有关问题之后,就要寻求转化关系。思维变通性的对立面是思维的保守性,即思维定势。思维定势是指一个人用同一种思维方法解决若干问题以后,往往会用同样的思维方法解决以后的问题。它表现就是记类型、记方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学解题的思维策略 高中数学解题的思维策略 高中数学 解题 思维 策略
限制150内