《数据结构C语言版》复习重点 .doc
《《数据结构C语言版》复习重点 .doc》由会员分享,可在线阅读,更多相关《《数据结构C语言版》复习重点 .doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数据结构(C语言版)复习重点重点在二、三、六、七、九、十章,考试内容两大类:概念,算法 第1章、绪论1. 数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。2. 数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。3. 数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。其4类基本结构:集合、线性结构、树形结构、图状结构或网状结构4. 逻辑结构:是数据元素之间的逻辑关系的描述。5. 物理结构(存储结构):是数据结构在计算机中的表示(又称映像)。其4种存储结构:顺序存数结构、链式存数结构、索引存数结构、散列存数结构6
2、. 算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。其5个重要特性:有穷性、确定性、可行性、输入、输出7. 时间复杂度:算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间度量记作,T(n)=O(f(n) ;他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称做算法的渐进时间复杂度,简称时间复杂度。例如: (a) +x;s=0;(b) for(i=1;i=n;+i)+x;s += x;(c) for(j=1;j=n;+j)for(k=1;knext为第一个结点地址,L-next=NULL为空表。生成结点:p=(L
3、inkList)malloc(sizeof(LNode)回收结点:free(q)2) 循环链表特点:表中最后一个结点的指针域指向头结点,整个链表形成一个环。循环链表的操作与线性链表基本一致,差别仅在于算法中的循环条件不是P或P-next是否为空,而是它们是否等于头指针。3) 双向链表特点:有2个指针域,其一指向直接后继,另一指向直接前趋。第3章、栈和队列1. 栈:是限定仅在表尾进行插入或删除操作的线性表。表尾端称为栈顶,表头端称为栈底,不含有元素的空表称为空栈;栈又称为后进先出的线性表。2. 队列:是一种先进先出的线性表,它只允许在表的一端进行插入,而另一端删除元素。允许插入的一端叫做队尾,允
4、许删除的一端则称为队头。1) 链队列:用链表示的队列。一个队列需要两个分别指示队头和队尾的指针(分别成为头指针和尾指针)才能确定唯一。和单链表一样,也给链队列添加一个头结点,并令头指针指向头结点。2) 循环队列:与顺序栈类似,除了用一组地址连续的存储单元依次存放从队列头到队列尾的元素之外,尚需附设两个指针front和rear分别指示队列头元素及队列尾元素的位置。初始化建空队列时,令front = rear = 0,每当插入新的队列尾元素时,“尾指针增1”;每当删除队列头元素时,“头指针增1”。第4章、串1. 串:是由零个或多个字符组成的有限序列。第5章、数组和广义表1. 数组特点:与线性表一样
5、,所有数据元素都必须属于同一数据类型。2. 数组的顺序存储结构:由于数组一般不作插入或删除操作,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不会发生变动,因此采用顺序存储结构表示数组。存储位置计算:假设每个数据元素需占用L个存储单元,则二维数组A中任一元素aij的存储位置可由下式确定以行序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*i+j)*L以列序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*j+i)*L式中LOC(i,j)是aij的存储位置;LOC(0,0)是a00的存储位置,即二维数组A的起始存储位置,也称基地址或基址;b2在以行序为主序的存
6、储结构时为每行存储元素的个数(列数),在以列序为主序的存储结构时为每列存储元素的个数(行数)。3. 广义表:是线性表的推广,也有人称其为列表(lists,用复数形式以示与统称的表list的区别)。记作LS=(a1,a2,an) ,其中LS是广义表(a1,a2,an)的名称,n是它的长度。在线性表的定义中,ai(1in)只限于是单个元素。而在广义表的定义中,ai可以是单个元素,也可以是广义表,分别称为广义表LS的原子和子表。例如:第6章、树和二叉树1. 二叉树:是一种树型的结构,它的特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒
7、。2. 二叉树的性质:1) 性质1:在二叉树的第i层上至多有2的i减1次方个结点(i1)。2) 性质2:深度为k的二叉树至多有2的k次方减1个结点(k1)。深度为k的二叉树至少有k个结点(k1)。深度为k的完全二叉树至少有2的k次方减2的k减1次方个结点(k1)。3) 性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。4) 性质4:具有n个结点的完全二叉树的深度为log2n+1。5) 性质5:如果对一棵有n个结点的完全二叉树(其深度为log2n+1)的结点按层序编号(从第1层到第log2n+1层,每层从左到右),则对任一结点i(1in)有:a) 如果i
8、=1,则结点i是二叉树的根,无双亲;如果i1,则其双亲PARENT(i)是结点i/2。b) 如果2in,则结点i无左孩子(结点i为叶子结点);否则其左孩子LCHILD(i)是结点2i。c) 如果2i+1n,则结点i无右孩子;否则其右孩子RCHILD(i)是结点2i+1。3. 满二叉树:一颗深度为k且有 2的k次方减1个结点的二叉树。4. 完全二叉树:深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应。5. 遍历二叉树:1) 根据二叉树写遍历结果:a) 先序遍历(先根遍历):DLR- + a * b - c d / e fb) 中序遍历(中根遍
9、历):LDRa + b * c - d - e / fc) 后序遍历(后根遍历):LRDa b c d - * + e f / -2) 根据遍历结果画二叉树:一棵二叉树的先序、中序和后序序列分别如下,其中有部分未给出,试求出空格处的结点字符,并画出该二叉树。先序:_B_EHI_FG_K中序:D_HEIA_CJG_后序:_H_EBF_KG_A解题思路:a) 由先序或后序确定根结点;如本题后序最后一个为A,根结点为A,所以先序第一个空就为A。b) 在中序找出根结点,根结点左侧为左子树,右侧为右子树;如本题D_HEI为左子树,_CJG_为右子树。c) 由先序确定紧跟在根结点后的左子树根;如本题紧跟在
10、A后的是B,B为左子树根,中序根结点的左子树只有一个空,所以为B。d) 继续由中序确定左子树根的左右子树,左侧为左子树,右侧为右子树;如本题B的左子树为D,右子树为HEI,所以先序第二个空为D。e) 重复c)、d)步骤确定整棵左子树;如本题先序中紧跟在D后的是E,E为B的右子树,由中序中看出E左子树为H,右子树为I,补充后序填空,前两空分别为D和I。f) 由后序确定右子树根的左子树,再由中序确定右子树根;如本题紧跟在B后的是F,F为右子树根的左子树,已知中序_CJG_为右子树,F只可能第一个空,那第二个空为K,补全先序、中序、后序填空并可画出二叉树。6. 森林与二叉树的转换:1) 树转换成二叉
11、树:连兄弟,留长子,删孩子。a) 连线,连接所有兄弟结点。b) 删线,仅保留双亲与长子结点的连线,删除与其他孩子结点之间的连线。c) 整理,原有的长子结点为左子树,从兄弟转换为孩子的结点为右子树。d) 注意,由于树根没有兄弟结点,固树转换为二叉树后,二叉树根结点的右子树必为空。2) 森林转换成二叉树:连树根及兄弟,留长子,删孩子。a) 连线,连接每棵树的根结点及所有兄弟结点。b) 删线,仅保留双亲与长子结点的连线,删除与其他孩子结点之间的连线。c) 整理,第一棵树根结点为二叉树根结点,原有的长子结点为左子树,从兄弟转换为孩子的结点为右子树。3) 二叉树转换成树:连左孩子的右孩子及其右孩子,删原
12、树右孩子。a) 连线,若某结点X存在左孩子XL,则将这个左孩子的右孩子结点XLR、左孩子的右孩子的右孩子结点XLRR、左孩子的右孩子的右孩子的右孩子结点XLRRR都与X结点连线。b) 删线,删除原二叉树的所有双亲与右孩子结点的连线。c) 整理,原二叉树根结点为树根结点。4) 二叉树转换成森林:连左孩子的右孩子及其右孩子,删原树右孩子。a) 连线,若某结点X存在左孩子XL,则将这个左孩子的右孩子结点XLR、左孩子的右孩子的右孩子结点XLRR、左孩子的右孩子的右孩子的右孩子结点XLRRR都与X结点连线。b) 删线,删除原二叉树的所有双亲与右孩子结点的连线。c) 整理,调整为多棵树的森林。7. 赫夫
13、曼树:又称最优树,是一类带权路径长度最短的树。a) 两个最小数值组成一对,小的在前,大的在后;如上图中2与4最小,2在前,4在后。b) 将两个最小数值的和算作一个数,再与其他数重复a)步骤;如上图中2与4的和为6,5与6最小,5在前,6在后。c) 最后计算WPL,它等于每个数值乘以从根结点到这个数值的连线个数的积之和;如上图中WPL=2*3+4*3+5*2+7*1=35。8. 赫夫曼编码:a) 在赫夫曼树上,左分支代表0,右分支代表1。b) 由根结点到指定结点的路径(从上到下把0、1连起来),就是该结点的赫夫曼编码;如上图(d)中a为0,b为10,c为110,d为111。第7章、图1. 图:多
14、个结点,结点之间的关系可以是任意的,图中任意两个数据元素之间都有可能相关。2. 无向完全图:有n(n-1)/2条边的无向图。3. 有向完全图:有n(n-1)条边的有向图。4. 入度:以顶点V为头的弧的数目称为V的入度。5. 出度:以V为尾的弧的数目称为V的出度。6. 连通图:在无向图中,任意两个顶点之间都有路径。7. 连通分量:在无向图中的极大连通子图。8. 邻接矩阵:无向图的邻接矩阵关于主对角线对称,在整个矩阵中非零元素的个数等于边个数的2倍,第i行和第i列中非零元素的个数等于该结点的度。9. 邻接表:无向图的邻接矩阵关于主对角线对称,在整个矩阵中非零元素的个数等于边个数的2倍,第i行和第i
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据结构C语言版 数据结构C语言版复习重点 数据结构 语言版 复习 重点
限制150内