《二次根式》知识点复习总结题型分类 .doc
《《二次根式》知识点复习总结题型分类 .doc》由会员分享,可在线阅读,更多相关《《二次根式》知识点复习总结题型分类 .doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义【例1】下列各式1),其中是二次根式的是 (填序号)举一反三:1、下列各式中,一定是二次根式的是( )A、 B、 C、 D、2、在、中是二次根式的个数有_个【例2】若式子有意义,则x的取值范围是 举一反三:1、使代数式有意义的x的取值范围是 2、使代数式有意义的x的取值范围是 3、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=+2009,则x+y= 举一反三:1、若,则xy= 2、若x、y都是实数,且y=,求xy的值3、当取什么值时,
2、代数式取值最小,并求出这个最小值。已知a是整数部分,b是 的小数部分,求的值。若7-的整数部分是a,小数部分是b,则 。若的整数部分为x,小数部分为y,求的值.二次根式的性质:1. 非负性:是一个非负数 2. 注意:此性质既可正用,也可反用: 3. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替 (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外 4. 公式与的区别与联系【例4】若则 1、已知为实数,且,则 2、已知直角三角形两边x、y的长满足x240,则第三边长为.3、若与互为相反数,则。【例5】 化简:的结果为 1、 在实数范围内分解因式: =
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次根式 二次根式知识点复习总结题型分类 二次 根式 知识点 复习 总结 题型 分类
限制150内