北师大版九年级上第三章图形的相似导学案 .doc
《北师大版九年级上第三章图形的相似导学案 .doc》由会员分享,可在线阅读,更多相关《北师大版九年级上第三章图形的相似导学案 .doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.1线段的比学习目标、重点、难点【学习目标】两条线段的比;成比例线段;比例的基本性质.【重点难点】1、两条线段的比;2、成比例线段;3、比例的基本性质.知识概览图线段的比新课导引在现实生活中,我们经常见到形状相同的图形,如下图所示,是我们平时所用的三角板,但同学们手中的三角板和老师手中的三角板有大小之分【问题探究】通过观察上面的图形可以知道这两组三角板有形状相同这一特点那么,你能知道这两组三角板的对应线段有什么关系吗?【点拨】 形状相同的两组三角板的对应线段成比例教材精华知识点1 两条线段的比通俗地说,所谓两条线段的比,就是把两条线段的长度相除所得的结果(比值)例如:线段AB3cm,CD5c
2、m,那么线段AB与CD的比是或35.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么就说这两条线段的比ABCDmn,或写成=其中,线段AB,CD分别叫做这个线段比的前项和后项.拓展 (1)定义中所说的“选用同一个长度单位”应格外引起注意如果线段AB9 mm,线段CD10 cm那么我们就不能说线段AB与线段CD的比是9 10,而应先把它们化成相同单位后再求比值,实际上这里AB与CD的比是9100 (2)从本质上讲,mn表示的是两数的相除关系,因此也写成既然是相除关系,那么就可以“约分”,如线段AB与线段CD的比是155,我们就可以说AB与CD的比是31(3)两条线段的比是有先
3、后顺序的若写线段AB与CD的比,就必须把表示AB长度的数写在前面或分数线上面(前项),表示CD长度的数写在后面或分数线下面(后项)规律方法小结 本节中所说的“比”是“两条线段的比”,实际上,单纯的两个数之间也可以建立比的关系例如:甲数为m,乙数为n,那么甲数与乙数的比就是mn或知识点2 成比例线段四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段拓展 1(1)比例线段所表示的是四条线段的关系,应该注意这个“四”字,一条线段不能构成比例线段,两条线段也不能,三条线段在不重复使用其中某一条的情况下也构不成比例线段五条和五条以上的线段
4、,只能就其中的某四条来研究是否构成比例线段(2)比例线段所表示的是一种相等关系,因此表示比例线段的式子中必须有等号存在2(1)为了讨论问题方便,我们再给出两个相关定义:如果线段a,b,c,d成比例,即,或abcd,则a,d叫做比例外项,b,c叫做比例内项(2)四个数之间也可以构成比例关系例如:甲数为m,乙数为n,丙数为p,丁数为q,若甲数与乙数的比值恰好等于丙数与丁数的比值,即,我们就说这四个数成比例.知识点3 比例的基本性质比例的基本性质:如果,那么以adbc.等比性质:如果=(b+d+n0),那么合比性质:如果,那么拓展 (1)将比例式转化为乘积式是有条件的,并不是比例式的四个字母中任意两
5、个字母的乘积都等于另外两个字母的乘积那么你认真观察一下,其中有什么规律呢?这个规律是:比例的外项乘积等于内项乘积(2)使用等比性质时,要注意 b+d+n0这个条件课堂检测基础知识应用题1、下列长度的四条线段中,不能成比例的是 ( )Aa=3,b=6,c=2,d=4 Ba=1,b=,c=,d=Ca4,b6,c5,d10 Da2,b,c,d22、如果把adbc写成线段的比例式,那么下列式子中错误的是 ( )Aabcd Bacbd Cbadc Dbdca综合应用题3、在RtABC中,C=90,若A=45,求BCAC和BCAB的值.探索创新题4、如果,且x+y+z=12,求x,y,z的值.体验中考1、
6、小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶( )A0.5 m B0.55 m C0.6 m D2.2 m2、在比例尺为12000的地图上测得A,B两地间的图上距离为5 cm,则A,B两地间的实际距离为 m学后反思附: 课堂检测及体验中考答案课堂检测1、答案:C【解题策略】 解此类问题,若有单位,应先将四条线段的长度单位统一,然后把四条线段按从小到大(或从大到小)的顺序排列,再看中间两数的积与两边两数的积是否相等,若相等,说明这四条线段成比例,否则,不成比例2、答案:D【解题策略】 比例的基本性质的逆用(即
7、:等积式转化为等比式)3、解:如图4-2所示,在RtABC中,因为C=90,A=45,所以ABC为等腰直角三角形.所以AC=BC,所以BCAC=11.又因为AB=BC.所以BCAB=BCBC=1.【解题策略】 由此题可知等腰直角三角形三边的比为1l4、解:设=k,则x=3k-4,y=2k-3,z=4k-8.代入x+y+z12,得3k-4+2k-3+4k- 812,解得k3,所以x3k-433-45, y2k-323-33, z4k-843-84【解题策略】 解此题的巧妙办法就是设连比式的值为K,则用含k的代数式表示其中的x,y,z,再利用题中的等式求出k的值,进而达到解题的目的.21*cnjy
8、*com体验中考1、分析 本题考查将实际问题转化为数学问题的能力根据物高:影长另一物高:另一影长,可求出小刚手臂举起后的总高度(h)根据题意,得,所以h(m),所以小刚举起的手臂超出头顶2.2-1.70.5(m)故选A.2、分析 根据比例尺列方程设实际距离为xcm,则可知,则x10000,即10000 cm100 m故填1003.2黄金分割学习目标、重点、难点【学习目标】黄金分割的定义;黄金分割的求法及画法.【重点难点】黄金分割的定义;黄金分割的求法及画法.知识概览图黄金分割新课导引五角星是我们常见的图形,如右图所示,它让你感受到了一种美现实生活中还有很多这样的图案,你能举出一些例子吗?【点拨
9、】在现实生活中,正五边形也会让你感受到一种美,还有许多雕塑、绘画等艺术作品都会给人一种美的享受.教材精华知识点1 黄金分割的定义如图4-6所示,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,由计算可知,ACAB10.6181黄金分割的应用:黄金分割不仅应用于艺术创作,还广泛应用于服装设计、汽车制造、建筑设计、几何图形创作等各类工艺造型中【出处:21教育名师】知识点2 黄金分割的画法画法1:如图4-7所示,设AB是已知线段,以AB为边作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EFEB;以线段AF
10、为边作正方形AFGH点H就是AB的黄金分割点画法2:如图4-8所示,已知线段AD,经过点B作BDAB,使BDAB,连接AD,在DA上截取DEDB,在AB上截取ACAE,则点C是线段AB的黄金分割点;课堂检测基础知识应用题1、已知线段AB,点P是它的黄金分割点,APPB,设以AP为边的正方形的面积为S1,以PB和AB为邻边的矩形面积为S2,则S1与S2之间的大小关系是 ( )AS1S2 BS1S2 CS1S2 D无法确定2、已知点C将线段AB黄金分割,且ACBC,则BC等于 ( )AAB BAB C AB DAB综合应用题3、以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在B
11、A的延长线上取点F,使PFPD,以AF为边作正方形AMEF,点M在AD上,如图4-10所示(1)求AM,DM的长;(2)试说明AM 2=ADDM;(3)根据(2)的结论,你能找出图中的黄金分割点吗?探索创新题4、如图4-13所示,作线段AB的黄金分割点C方法如下:(1)过点B作BDAB,使BDAB;(2)连接AD,在AD上截取DEBD;(3)在AB上截取ACAE,则点C是线段AB的黄金分割点即AC 2ABBC你能证明这样得到的C点是黄金分割点吗?体验中考1、宽与长的比是的矩形叫黄金矩形,心理学测试表明,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法
12、归纳出以下作图步骤(如图4-14所示)第一步:作一个任意正方形ABCD;第二步:分别取AD,BC的中点M,N,连接MN;第三步:以N为圆心,ND为半径画弧,交BC的延长线于点E;第四步:过点E作EFAD,交AD的延长线于点F,请你根据以上作法,证明矩形DCEF为黄金矩形(可取AB2) 学后反思附: 课堂检测及体验中考答案课堂检测1、答案:B.【解题策略】 黄金分割点把线段分成两部分,较长线段是较短线段和整个线段的比例中项2、答案:A.【解题策略】 理解由黄金分割点得到的三条线段的关系3、分析 抓住题中的作图过程:便抓住了问题中的数量关系,根据作图过程,层层推进解:(1)因为正方形ABCD的边长
13、为2,P是AB的中点, 所以ADAB2;AP1,BAD90, 所以PD 因为PFPD,所以AF-1在正方形AMEF中,AMAF-l,所以MDAD-AM3-.(2)由(1)得ADDM2(3-)6-2,AM 2=(-1)26-2所以AM 2ADDM.(3)图4-10中的M点是线段AD的黄金分割点【解题策略】 根据数形结合思想,逐步推理4、解:设ABa,ACx,则ADAE+EDx+ 在RtABD中,由勾股定理,得, 整理,得x2a(a-x),即AC 2ABBC,所以点C是线段AB的黄金分割点【解题策略】 解此题的关键是利用、黄金分割的定义来证明体验中考1、证明:在正方形ABCD中,取AB2 N为BC
14、的中点,NCBC1 在RtDNC中,ND 又NE=ND,CE=NE-NC=-1, 故矩形DCEF为黄金矩形【解题策略】 理解黄金分割的意义3.3相似三角形学习目标、重点、难点【学习目标】1、对相似三角形的理解和认识2、相似三角形的定义3、相似三角形与全等三角形的区别和联系.【重点难点】相似三角形的定义相似三角形与全等三角形的区别和联系.知识概览图 相似三角形新课导引前面我们学习了全等三角形,即两个三角形的三角对应相等、三边对应相等,那么根据上节课所学习的相似多边形的概念,你能类比推理出相似三角形的概念吗?21cnjy【点拨】根据前面学习的有关全等三角形及相似多边形的概念,可以类比推出相似三角形
15、的概念:三角对应相等,三边对应成比例的两个三角形叫做相似三角形教材精华知识点 相似三角形的定义三角对应相等、三边对应成比例的两个三角形叫做相似三角形ABC与DEF相似,记作ABCDEF知识拓展 相似三角形的定义告诉我们:相似三角形的对应边的比叫做相似比(1)如果两个三角形的三角对应相等、三边对应成比例,那么这两个三角形相似(2)如果两个三角形相似,那么它们的对应角相等、对应边成比例相似三角形与全等三角形全等三角形是特殊的相似三角形,它们的相似比是1,但相似三角形不一定是全等三角形二者的区别与联系如下表所示:名 称类 别全等三角形相似三角形定义能够完全重合的两个三角形对应角相等、对应边成比例的两
16、个三角形图形特征形状、大小完全一样形状一样、大小未必一样表示方法ABC,读作ABC全等于ABC,读作ABC相似于性质对应角相等,对应边相等对应角相等,对应边成比例相似比若ABC,则=1若ABC,则(k为任何正实数),相似比有顺序性对应角、对应边的识别(1)对应顶点的字母写在对应位置上(2)对应角所对的边是对应边,对应边所对的角是对应角(3)最大(小)的边(角)与最大(小)的边(角)是对应边(角)区别与联系(1)找对应元素的方法一样(2)全等三角形是相似比为l的相似三角形,但相似三角形不一定全等,二者的区别在于全等要求对应边相等,而相似要求对应边成比例课堂检测基本概念题1、下列命题正确的是 (
17、)A所有的直角三角形都相似 B所有的等腰三角形都相似C所有的等腰直角三角形都相似 D以上结论都不正确基础知识应用题2、如图4-42所示,已知ADEABC,AD3,AE2,DE1.6,AC6,求BC,BD的长21教育网综合应用题3、如图4-44所示,AC,BD相交于点O,且ABCD,OA4,OB4,OD2,OC2,AB6,CD3,则AOB与COD是否相似?为什么?21世纪教育网所有探索创新题4、说明任意两个等腰直角三角形都相似 体验中考1、如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,那么x的值, ( )21cnjycomA只有1个 B可以有2个C有
18、2个以上,但有限 D有无数个学后反思附: 课堂检测及体验中考答案课堂检测1、答案:C【解题策略】 解此题的关键是根据相似三角形的定义解题2、解:因为ADEABC, 所以, 所以BC=4.8, AB=9 所以BDAB-AD9-36【解题策略】 灵活运用相似三角形的性质解决问题3、解:由ABCD可得AC,BD, 且AOBCOD(对顶角相等), 因为, 所以, 所以AOB与COD的对应角相等、对应边成比例, 所以AOBCOD【解题策略】 本题主要考查相似三角形的定义及平行线性质的综合运用4、分析 要判定两个三角形是否相似,现在我们只能依靠定义来说明解:如图4-45所示,任意作等腰直角三角形ABC与等
19、腰直角三角形, C90,设ACBCm,n 因为A45,B45,C= 90, 所以三个角对应相等 由勾股定理得ABm, =n, 所以, 即三条边对应成比例 所以ABC与相似,即任意两个等腰直角三角形都相似体验中考1、分析 可以是直角边,也可以是斜边,因此答案可以有2个故选B3.4探索三角形相似的条件学习目标、重点、难点【学习目标】相似三角形的判定条件相似三角形的判定方法的作用【重点难点】 如何判定2个三角形相似知识概览图 相似三角形的条件新课导引你能回想起两个三角形全等的判定方法吗?类比这些方法,你能找到相似三角形的判定方法吗?【问题探究】 证明两个三角形全等的判定方法有“SAS”“SSS”“A
20、SA”“AAS”,类比这些方法,可以找到相似三角形的判定方法,你能用数学语言描述吗? 21世纪*教育网【解答】两角对应相等的两个三角形相似;三边对应成比例的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似教材精华知识点1 相似三角形的判定条件一两角对应相等的两个三角形相似用定义来判定两个三角形相似是比较麻烦的因为它要涉及两个三角形的六个角、六条边共12个元素定义中给出的判定条件是否过多呢?回忆全等三角形的定义和三角形全等的条件,我们很容易产生这样的联想(事实也是如此):只要从三组角对应相等、三组边对应成比例中选取出部分条件来代替全部条件,就可以判定两个三角形相似到底选取哪些条件就可以代
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大版九年级上第三章图形的相似导学案 北师大 九年级 第三 图形 相似 导学案
限制150内