其中复习高一数学不等式解法经典例题 .doc
《其中复习高一数学不等式解法经典例题 .doc》由会员分享,可在线阅读,更多相关《其中复习高一数学不等式解法经典例题 .doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、典型例题一例1 解不等式:(1);(2)分析:如果多项式可分解为个一次式的积,则一元高次不等式(或)可用“穿根法”求解,但要注意处理好有重根的情况解:(1)原不等式可化为把方程的三个根顺次标上数轴然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分原不等式解集为(2)原不等式等价于原不等式解集为说明:用“穿根法”解不等式时应注意:各一次项中的系数必为正;对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图典型例题二例2 解下列分式不等式:(1); (2)分析:当分式不等式化为时,要注意它的等价变形(1)解:原不等式等价于用“穿根法”原不等式解集
2、为。(2)解法一:原不等式等价于 原不等式解集为。解法二:原不等式等价于用“穿根法”原不等式解集为典型例题三例3 解不等式分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义二是根据绝对值的性质:或,因此本题有如下两种解法解法一:原不等式即或故原不等式的解集为解法二:原不等式等价于 即 典型例题四例4 解不等式分析:这是一个分式不等式,其左边是两个关于二次式的商,由商的符号法则,它等价于下列两个不等式组:或所以,原不等式的解集是上面两个不等式级的解集的并集也可用数轴标根法求解解法一:原不等式等价下面两个不等式级的并集:或或或或或原不等式解集是解法二:原不等式化为画数
3、轴,找因式根,分区间,定符号符号原不等式解集是说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解解法二中,“定符号”是关键当每个因式的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含的区间符号,其他各区间正负相间在解题时要正确运用典型例题五例5 解不等式分析:不等式左右两边都是含有的代数式,必须先把它们移到一边,使另一边为0再解解:移项整理,将原不等式化为由恒成立,知原不等式等价于解之,得原不等式的解集为说明:此题易出现去分母得的错误解法避免误解的方法是移项使一边为再解另外,在解题过程中,对出现的二项式要注意其是否有实根
4、,以便分析不等式是否有解,从而使求解过程科学合理典型例题六例6 设,解关于的不等式分析:进行分类讨论求解解:当时,因一定成立,故原不等式的解集为当时,原不等式化为;当时,解得;当时,解得当时,原不等式的解集为;当时,原不等式的解集为说明:解不等式时,由于,因此不能完全按一元二次不等式的解法求解因为当时,原不等式化为,此时不等式的解集为,所以解题时应分与两种情况来讨论在解出的两根为,后,认为,这也是易出现的错误之处这时也应分情况来讨论:当时,;当时,典型例题七例7 解关于的不等式分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解解:原不等式或由,得:由判别式,故不等式的解是当时,不等式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 其中复习高一数学不等式解法经典例题 其中 复习 数学 不等式 解法 经典 例题
限制150内