初等数学研究课后习题答案 .doc
《初等数学研究课后习题答案 .doc》由会员分享,可在线阅读,更多相关《初等数学研究课后习题答案 .doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初等代数研究课后习题 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何,当且仅当时,.(2)对任何,在,中有且只有一个成立.证明:对任何,设,(1)“” ,则,使,,“” ,则,使,,综上 对任何,(2)由(1) 与不可能同时成立,假设与同时成立,则,使且,与B为有限集矛盾,与不可能同时成立,综上,对任何,在,中有且只有一个成立.2、证明自然数的加法满足交换律.证明:对任何设M为使等式成立的所有b组成的集合先证 ,设满足此式的组成集合k,显然有1+1=1+1成立,设,则 , 取定,则,设,则 对任何,3、证明自然数的乘法是唯一存在的 证明:唯一性:取定,反证:
2、假设至少有两个对应关系,对,有 ,设是由使成立的所有的组成的集合, 设则, 即,乘法是唯一的存在性:设乘法存在的所有组成集合 当时, ,设,有与它对应,且,对,令 即乘法存在p245、解:满足条件的有, , 基数和为p246、证明:,中的与中的对应, p248、证明:1)3+4=7 2) p2412、证明:1) 2)p2636、已知对任何满足 求证:1)2)3) 证明:1)当时,结论成立,假设时,结论成立,即,当时,所以对一切自然数结论都成立2)当时,结论成立假设时,结论成立,即当时,所以对一切自然数结论都成立3)当时,结论成立假设时,结论成立,即当时, 所以对一切自然数结论都成立p621、证
3、明定理2.1证明:,因为自然数加法满足交换律而,以为自然数满足加法结合律即整数加法满足交换律和结合律p622、已知,求证的充要条件是 证明:“” 已知则“” 已知则, p624、已知,求证证明: p625、已知,求证证明:左边 右边 所以左边等于右边p627、已知,求证当且仅当时证明:“” 已知, 因为 是负数, “” 已知则因为是负数,p629、已知,求证:1) ,2) 证明:设 1) 而 2) 而p6312、名棋手每两个比赛一次,没有平局,若第名胜负的次数各为,求证:证明:对于,必存在一个使得 p6316、已知,求证证明:由已知:使, p6317、设2不整除,求证证明:因为2不整除,所以存
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初等数学研究课后习题答案 初等 数学 研究 课后 习题 答案
限制150内