信息论测试题及答案 .doc
《信息论测试题及答案 .doc》由会员分享,可在线阅读,更多相关《信息论测试题及答案 .doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、设X、Y是两个相互统计独立的二元随机变量,其取-1或1的概率相等。定义另一个二元随机变量Z,取Z=YX(一般乘积)。试计算:1.H(Y)、H(Z); 2.H(YZ);3.I(X;Y)、I(Y;Z);二、如图所示为一个三状态马尔科夫信源的转移概率矩阵 1. 绘制状态转移图; 2. 求该马尔科夫信源的稳态分布; 3. 求极限熵; 三、在干扰离散对称信道上传输符号1和0,已知P(0)=1/4,P(1)=3/4,试求:1. 信道转移概率矩阵P 2.信道疑义度 3.信道容量以及其输入概率分布四、某信道的转移矩阵,求信道容量,最佳输入概率分布。五、求下列各离散信道的容量(其条件概率P(Y/X)如下:)
2、六、求以下各信道矩阵代表的信道的容量答案一、设X、Y是两个相互统计独立的二元随机变量,其取-1或1的概率相等。定义另一个二元随机变量Z,取Z=YX(一般乘积)。试计算:1.H(Y)、H(Z);2.H(XY)、H(YZ);3.I(X;Y)、I(Y;Z);解:1. =1bit/符号Z=YX而且X和Y相互独立 = = 故H(Z)= =1bit/符号2.从上式可以看出:Y与X的联合概率分布为:P(Y,Z)Y=1Y=-1Z=10.250.25Z=-10.250.25H(YZ)=H(X)+H(Y)=1+1=2bit/符号3.X与Y相互独立,故H(X|Y)=H(X)=1bit/符号 I(X;Y)=H(X)-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息论测试题及答案 信息论 测试 答案
限制150内