全等三角形的提高拓展经典题教师版 .doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《全等三角形的提高拓展经典题教师版 .doc》由会员分享,可在线阅读,更多相关《全等三角形的提高拓展经典题教师版 .doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形的提高拓展训练知识点睛 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角(3)有公共边的,公共边常是对应边(4)有公共角的,公共角常是对应角(5)有对顶角的,对顶角常是对应角(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)要想正确地表示两个三角形全等,找出对应的元素是关键全等三角形的判定方法
2、:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等 (2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等(3) 边边边定理(SSS):三边对应相等的两个三角形全等(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系而证明两条线段或两个角的和、差、倍、分相等是几何证明的基
3、础例题精讲板块一、截长补短【例1】 已知中,、分别平分和,、交于点,试判断、的数量关系,并加以证明 【例2】 如图,点为正三角形的边所在直线上的任意一点(点除外),作,射线与外角的平分线交于点,与有怎样的数量关系?【变式拓展训练】_N_C_D_E_B_M_A如图,点为正方形的边上任意一点,且与外角的平分线交于点,与有怎样的数量关系? 【例3】 已知:如图,ABCD是正方形,FAD=FAE. 求证:BE+DF=AE._F_E_D_C_B_A【例4】 以的、为边向三角形外作等边、,连结、相交于点求证:平分 【例5】 如图所示,是边长为的正三角形,是顶角为的等腰三角形,以为顶点作一个的,点、分别在、
4、上,求的周长 【例6】 五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180, 求证:AD平分CDE板块二、全等与角度【例7】如图,在中,是的平分线,且,求的度数. 【例8】在等腰中,顶角,在边上取点,使, 求. 【例9】 如图所示,在中,又在上,在上,且满足,求. 【例10】 在四边形中,已知,求的度数.【例11】 如图所示,在四边形中,求的度数. 【例12】 在正内取一点,使,在外取一点,使,且,求. 【例13】 如图所示,在中,为内一点,使得,求的度数.全等三角形证明经典50题(含答案)ADBC1. 已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到
5、E,使DE=AD,则三角形ADC全等于三角形EBD DABC即BE=AC=2 在三角形ABE中,AB-BEAEAB+BE 即:10-22AD10+2 4AD6 又AD是整数,则AD=5 2. 已知:D是AB中点,ACB=90,求证:3. 已知:BC=DE,B=E,C=D,F是CD中点,求证:1=2ABCDEF21证明:连接BF和EF。因为 BC=ED,CF=DF,BCF=EDF。所以 三角形BCF全等于三角形EDF(边角边)。所以 BF=EF,CBF=DEF。连接BE。在三角形BEF中,BF=EF。所以 EBF=BEF。又因为 ABC=AED。所以 ABE=AEB。所以 AB=AE。在三角形A
6、BF和三角形AEF中,AB=AE,BF=EF,ABF=ABE+EBF=AEB+BEF=AEF。所以 三角形ABF和三角形AEF全等。所以 BAF=EAF (1=2)。 BACDF21E4. 已知:1=2,CD=DE,EF/AB,求证:EF=AC证明:过E点,作EG/AC,交AD延长线于G则DEG=DCA,DGE=2又CD=DEADCGDE(AAS)EG=ACEF/ABDFE=11=2DFE=DGEEF=EGEF=ACACDB5. 已知:AD平分BAC,AC=AB+BD,求证:B=2C证明:在AC上截取AE=AB,连接EDAD平分BACEAD=BAD又AE=AB,AD=ADAEDABD(SAS)
7、AED=B,DE=DBAC=AB+BD AC=AE+CECE=DEC=EDCAED=C+EDC=2CB=2C12. 如图,四边形ABCD中,ABDC,BE、CE分别平分ABC、BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=BA,连接EF.ABE=FBE,BE=BE,则ABEFBE(SAS),EFB=A;AB平行于CD,则:A+D=180;又EFB+EFC=180,则EFC=D;又FCE=DCE,CE=CE,故FCEDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.DCBAFE13.已知:AB/ED,EAB=BDE,AF=CD,EF=BC,求证:F=CA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形的提高拓展经典题教师版 全等 三角形 提高 拓展 经典 教师版
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内