圆的相似综合题 .doc
《圆的相似综合题 .doc》由会员分享,可在线阅读,更多相关《圆的相似综合题 .doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、相似与圆综合题目练习2(2013湛江)如图,已知AB是O的直径,P为O外一点,且OPBC,P=BAC(1)求证:PA为O的切线;(2)若OB=5,OP=,求AC的长3(2013营口)如图,点C是以AB为直径的O上的一点,AD与过点C的切线互相垂直,垂足为点D(1)求证:AC平分BAD;(2)若CD=1,AC=,求O的半径长4(2013西宁)如图,O是ABC的外接圆,BC为O直径,作CAD=B,且点D在BC的延长线上,CEAD于点E(1)求证:AD是O的切线;(2)若O的半径为8,CE=2,求CD的长6(2013宁夏)在RtABC中,ACB=90,D是AB边上的一点,以BD为直径作O交AC于点E
2、,连结DE并延长,与BC的延长线交于点F且BD=BF(1)求证:AC与O相切(2)若BC=6,AB=12,求O的面积7(2013黄冈)如图,AB为O的直径,C为O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分DAB(1)求证:DC为O的切线;(2)若O的半径为3,AD=4,求AC的长9(2013朝阳)如图,直线AB与O相切于点A,直径DC的延长线交AB于点B,AB=8,OB=10(1)求O的半径(2)点E在O上,连接AE,AC,EC,并且AE=AC,判断直线EC与AB有怎样的位置关系?并证明你的结论(3)求弦EC的长 11(2013巴中)如图,在平行四边形ABCD中,过点A作AEBC
3、,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD=6,AF=4,求AE的长12(2012岳阳)如图所示,在O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC(1)求证:AC2=ABAF;(2)若O的半径长为2cm,B=60,求图中阴影部分面积14(2012陕西)如图,正三角形ABC的边长为3+(1)如图,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形EFPN,且使正方形EFPN的面积最大(不要求写作法);(2)求(1)中作出的正方形EFPN的边长
4、;(3)如图,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由15(2012河南)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G若=3,求的值 (1)尝试探究在图1中,过点E作EHAB交BG于点H,则AB和EH的数量关系是_,CG和EH的数量关系是_,的值是_(2)类比延伸如图2,在原题的条件下,若=m(m0),则的值是_(用含有m的代数
5、式表示),试写出解答过程(3)拓展迁移如图3,梯形ABCD中,DCAB,点E是BC的延长线上的一点,AE和BD相交于点F若=a,=b,(a0,b0),则的值是_(用含a、b的代数式表示)初中数学组卷一解答题(共15小题)2(2013湛江)如图,已知AB是O的直径,P为O外一点,且OPBC,P=BAC(1)求证:PA为O的切线;(2)若OB=5,OP=,求AC的长考点:切线的判定;勾股定理;相似三角形的判定与性质分析:(1)欲证明PA为O的切线,只需证明OAAP;(2)通过相似三角形ABCPAO的对应边成比例来求线段AC的长度解答:(1)证明:AB是O的直径,ACB=90,BAC+B=90又OP
6、BC,AOP=B,BAC+AOP=90P=BACP+AOP=90,由三角形内角和定理知PAO=90,即OAAP又OA是的O的半径,PA为O的切线;(2)解:由(1)知,PAO=90OB=5,OA=OB=5又OP=,在直角APO中,根据勾股定理知PA=,由(1)知,ACB=PAO=90BAC=P,ABCPOA,=,解得AC=8即AC的长度为8点评:本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键3(2013营口)如图,点C是以AB为直径的O上的一点,AD与过点C的切线互相垂直,垂足为点D(1)求证:AC平分
7、BAD;(2)若CD=1,AC=,求O的半径长考点:切线的性质;勾股定理;相似三角形的判定与性质专题:压轴题分析:(1)连接OC先由OA=OC,可得ACO=CAO,再由切线的性质得出OCCD,根据垂直于同一直线的两直线平行得到ADCO,由平行线的性质得DAC=ACO,等量代换后可得DAC=CAO,即AC平分BAD;(2)解法一:如图2,过点O作OEAC于E先在RtADC中,由勾股定理求出AD=3,由垂径定理求出AE=,再根据两角对应相等的两三角形相似证明AEOADC,由相似三角形对应边成比例得到,求出AO=,即O的半径为;解法二:如图2,连接BC先在RtADC中,由勾股定理求出AD=3,再根据
8、两角对应相等的两三角形相似证明ABCACD,由相似三角形对应边成比例得到,求出AB=,则O的半径为解答:(1)证明:连接OCOA=OC,ACO=CAOCD切O于C,OCCD,又ADCD,ADCO,DAC=ACO,DAC=CAO,即AC平分BAD;(2)解法一:如图2,过点O作OEAC于E在RtADC中,AD=3,OEAC,AE=AC=CAO=DAC,AEO=ADC=90,AEOADC,即,AO=,即O的半径为解法二:如图2,连接BC在RtADC中,AD=3AB是O直径,ACB=90,CAB=DAC,ACB=ADC=90,ABCACD,即,AB=,=,即O的半径为点评:本题考查了等腰三角形、平行
9、线的性质,勾股定理,垂径定理,切线的性质,相似三角形的判定与性质此题难度适中,注意掌握辅助线的作法及数形结合思想的应用4(2013西宁)如图,O是ABC的外接圆,BC为O直径,作CAD=B,且点D在BC的延长线上,CEAD于点E(1)求证:AD是O的切线;(2)若O的半径为8,CE=2,求CD的长考点:切线的判定;解分式方程;相似三角形的判定与性质分析:(1)首先连接OA,由BC为O直径,CEAD,CAD=B,易求得CAD+OAC=90,即OAD=90,则可证得AD是O的切线;(2)易证得CEDOAD,然后设CD=x,则OD=x+8,由相似三角形的对应边成比例,可得方程:,继而求得答案解答:(
10、1)证明:连接OA,BC为O的直径,BAC=90,B+ACB=90,OA=OC,OAC=OCA,CAD=B,CAD+OAC=90,即OAD=90,OAAD,点A在圆上,AD是O的切线;(2)解:CEAD,CED=OAD=90,CEOA,CEDOAD,CE=2,设CD=x,则OD=x+8,即,解得x=,经检验x=是原分式方程的解,所以CD=点评:此题考查了切线的判定、相似三角形的判定与性质以及直角三角形的性质此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用5(2013绍兴)在ABC中,CAB=90,ADBC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上(1)如
11、图1,AC:AB=1:2,EFCB,求证:EF=CD(2)如图2,AC:AB=1:,EFCE,求EF:EG的值考点:相似三角形的判定与性质;全等三角形的判定与性质专题:压轴题分析:(1)根据同角的余角相等得出CAD=B,根据AC:AB=1:2及点E为AB的中点,得出AC=BE,再利用AAS证明ACDBEF,即可得出EF=CD;(2)作EHAD于H,EQBC于Q,先证明四边形EQDH是矩形,得出QEH=90,则FEQ=GEH,再由两角对应相等的两三角形相似证明EFQEGH,得出EF:EG=EQ:EH,然后在BEQ中,根据正弦函数的定义得出EQ=BE,在AEH中,根据余弦函数的定义得出EH=AE,
12、又BE=AE,进而求出EF:EG的值解答:(1)证明:如图1,在ABC中,CAB=90,ADBC于点D,CAD=B=90ACBAC:AB=1:2,AB=2AC,点E为AB的中点,AB=2BE,AC=BE在ACD与BEF中,ACDBEF,CD=EF,即EF=CD;(2)解:如图2,作EHAD于H,EQBC于Q,EHAD,EQBC,ADBC,四边形EQDH是矩形,QEH=90,FEQ=GEH=90QEG,又EQF=EHG=90,EFQEGH,EF:EG=EQ:EHAC:AB=1:,CAB=90,B=30在BEQ中,BQE=90,sinB=,EQ=BE在AEH中,AHE=90,AEH=B=30,co
13、sAEH=,EH=AE点E为AB的中点,BE=AE,EF:EG=EQ:EH=BE:AE=1:点评:本题考查了相似三角形的判定和性质、全等三角形的判定和性质、矩形的判定和性质,解直角三角形,综合性较强,有一定难度解题的关键是作辅助线,构造相似三角形,并且证明四边形EQDH是矩形6(2013宁夏)在RtABC中,ACB=90,D是AB边上的一点,以BD为直径作O交AC于点E,连结DE并延长,与BC的延长线交于点F且BD=BF(1)求证:AC与O相切(2)若BC=6,AB=12,求O的面积考点:切线的判定;相似三角形的判定与性质分析:(1)连接OE,求出ODE=F=DEO,推出OEBC,得出OEAC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆的相似综合题 相似 综合
限制150内