基于MATLAB的有噪声的语音信号处理的课程设计 .doc
《基于MATLAB的有噪声的语音信号处理的课程设计 .doc》由会员分享,可在线阅读,更多相关《基于MATLAB的有噪声的语音信号处理的课程设计 .doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、DSP实验课程设计实验报告姓名: 学号: 班级:1. 课程设计题目:基于MATLAB的有噪声的语音信号处理的课程设计。2. 课程设计的目的:综合运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,再利用MATLAB做为编程工具进行计算机实现,从而加深对所学知识的理解,建立概念。3. 课程设计的要求:(1)熟悉离散信号和系统的时域特性。(2)掌握序列快速傅里叶变换FFT方法。(3)学会MATLAB的使用,掌握MATLAB的程序设计方法。(4)利用MATLAB对语音信号进行频谱分析。(5)掌握MATLAB设计各种数字滤波器的方法和对信号进行滤波的方法。4. 课程设计的内
2、容:录制一段语音信号,对语音信号进行频谱分析,利用MATLAB中的随机函数产生噪声加入到语音信号中,使语音信号被污染,然后进行频谱分析,设计FIR和IIR数字滤波器,并对噪声污染的语音信号进行滤波,分析滤波后的信号的时域和频域特征,回放语音信号。5. 课程设计的步骤:(1)语音信号的获取通过录音软件录制一段语音“数字信号处理”,命名为“OriSound”,时长大约1到2秒,在MATLAB中,通过使用wavread函数,对语音进行采样: y,fs,nbits=wavread(OriSound); %语音信号的采集采样值放在向量y中,采样频率为fs,采样位数为nbits。(2)语音信号的频谱分析画
3、出语音信号的时域波形,然后对语音信号进行频谱分析,在MATLAB中,通过使用fft函数对信号进行快速傅里叶变换,得到信号的频谱特性。因此采集语音并绘出波形和频谱的模块程序如下:y,fs,nbits=wavread(OriSound); %语音信号的采集sound(y,fs,nbits); %语音信号的播放n=length(y) ; %计算语音信号的长度Y=fft(y,n); %快速傅里叶变换figure;subplot(2,1,1);%绘出时域波形plot(y);title(原始信号波形,fontweight,bold);axis( 00000 80000 -1 1);%通过尝试确定合适的坐标
4、参数grid;subplot(2,1,2);%绘出频域频谱plot(abs(Y);title(原始信号频谱,fontweight,bold);axis( 0 150000 0 4000);%通过尝试确定合适的坐标参数grid;结果如下:可以看到,语音信号的频率集中在低频部分。(3)产生噪声信号在MATLAB中,通过使用randn函数产生随机噪声信号,并加到语音信号中得到被污染的语音信号,回放语音信号。产生随机噪声:Noise=0.2*randn(n,1);其中用0.2倍乘噪声用来适当削减噪声的作用,便于对语音信号进行处理并比较效果。(4)污染信号频谱分析对被污染的加噪信号进行时域和频域分析。加
5、噪声并分析信号波形频谱的模块程序及说明如下:y,fs,nbits=wavread();%语音信号采集sound(y,fs,nbits); %回放语音信号便于比较效果n = length (y) ; %计算语音信号长度Noise=0.2*randn(n,1);%产生随机噪声信号Noises=y+Noise;%将Noise添加到原始信号,得到污 染信号ssound(s);%回放污染信号sfigure;subplot(2,1,1);%绘制加噪信号时域波形plot(s);title(加噪语音信号的时域波形,fontweight,bold);axis( 00000 80000 -1 1);grid;S=
6、fft(s); %对s进行快速傅里叶变换得到频谱 subplot(2,1,2);%绘制加噪信号频域频谱plot(abs(S);title(加噪语音信号的时域波形,fontweight,bold);axis( 0 150000 0 4000);grid;结果如下:可以看到,随机噪声均匀的分布在整个频谱范围内。(5)设计FIR和IIR数字滤波器在MATLAB中,根据频谱特征设计FIR和IIR滤波器。在Matlab中,可以利用函数fir1设计FIR滤波器,利用函数butter,cheby1设计IIR滤波器,利用Matlab中的函数freqz画出各步滤波器的频率响应。低通滤波器的性能指标:fp=100
7、0Hz,fc=1200Hz,As=100db ,Ap=1dB高通滤波器的性能指标:fp=3500Hz,fc=4000Hz,As=100dB,Ap=1dB;带通滤波器的性能指标:fp1=1200Hz,fp2=3000hZ,fc1=1000Hz,fc2=3200Hz,As=100dB,Ap=1dB在MATLAB中,利用N,wc=butter(N,wc,Rp,As,s)设计并计算巴特沃斯模拟滤波器的阶数N和3dB截止频率wc;B,A=cheby1(N,Rp,wpo,ftypr)设计切比雪夫I型滤波器。在课程设计中,共设计了六种滤波器对信号进行滤波:FIR低通,高通,带通滤波器,IIR低通,高通,带通
8、滤波器。通过对原始信号和加噪信号的频谱进行观察,原始语音信号频谱集中在低频段,而随机噪声接近均匀的分布在整个频谱范围内,因此推测选用低通滤波器去噪性能要好于高通和带通滤波器。(6)对污染信号进行滤波在MATLAB中用FIR和IIR滤波器对加噪信号进行滤波,其中通过利用函数fftfilt用FIR滤波器滤波,通过利用函数filter用IIR滤波器滤波。(7)回放语音信号在MATLAB中,通过用sound函数对语音信号进行回放,用以比较各滤波器的滤波效果。各滤波器设计模块的程序和说明如下:(1) IIR低通滤波器设计 y,fs,nbits=wavread();%语音信号采集n = length (y
9、) ; %计算语音信号长度Noise=0.2*randn(n,1);%产生随机噪声信号Noises=y+Noise;%将Noise添加到原始信号,得到污 染信号sS=fft(s); %快速傅里叶变换 Ft=8000;Fp=1000;Fs=1200;wp=2*pi*Fp/Ft;ws=2*pi*Fs/Ft;n11,wn11=buttord(wp,ws,1,50,s); %低通滤波器的阶数和截止频率b11,a11=butter(n11,wn11,s); %S域频率响应的参数 num11,den11=bilinear(b11,a11,0.5); %利用双线性变换实现频率响应S域到Z域的变换 z11=f
10、ilter(num11,den11,s);%滤波sound(z11,fs,nbits);%回放滤波后的信号m11=fft(z11); %滤波后的信号频谱figure;subplot(2,2,1);%绘出滤波前的信号频谱plot(abs(S),g);title(滤波前信号的频谱,fontweight,bold);axis( 0 80000 0 4000);grid;subplot(2,2,2);%绘出滤波后的信号频谱plot(abs(m11),r);title(滤波后信号的频谱,fontweight,bold);axis( 0 80000 0 4000);grid;subplot(2,2,3);
11、%绘出滤波前的信号波形plot(s);title(滤波前信号的波形,fontweight,bold);axis(00000 100000 -1 1);grid;subplot(2,2,4);%绘出滤波后的信号波形plot(z11);title(滤波后的信号波形,fontweight,bold);axis(00000 100000 -1 1);grid;结果如下:可以看出,滤波后将非低频部分的噪声频率滤掉,但还有一些高于原始语音信号的频率没有被去除。(2) IIR高通滤波器设计y,fs,nbits=wavread (OriSound); %语音信号采集n = length (y) ; %计算语音
12、信号的长度Noise=0.2*randn(n,1); %产生随机噪声s=y+Noise; %语音信号加入噪声得到加噪信号S=fft(s); %快速傅里叶变换Fp1=1200;Fs1=1000;Ft=8000;wp1=tan(pi*Fp1/Ft);ws1=tan(pi*Fs1/Ft);wp=1;ws=wp1*wp/ws1;n13,wn13=cheb1ord(wp,ws,1,50,s); %模拟的低通滤波器阶数和截止频率b13,a13=cheby1(n13,1,wn13,s); %S域的频率响应的参数num,den=lp2hp(b13,a13,wn13);%S域低通参数转为高通的num13,den
13、13=bilinear(num,den,0.5); %利用双线性变换实现频率响应S域到Z域转换z13=filter(num13,den13,s);%滤波sound(z13,fs,nbits);%回放滤波后的信号m13=fft(z13); %滤波后的信号频谱figure;subplot(2,2,1);%绘出滤波前的信号频谱plot(abs(S),g);title(滤波前信号的频谱,fontweight,bold);axis(0 80000 0 4000);grid;subplot(2,2,2);%绘出滤波后的信号频谱plot(abs(m13),r);title(滤波后信号的频谱,fontweig
14、ht,bold);axis(0 80000 0 4000);grid;subplot(2,2,3);%绘出滤波前的信号波形plot(s);title(滤波前信号的波形,fontweight,bold);axis(00000 100000 -1 1);grid;subplot(2,2,4);%绘出滤波后的信号波形plot(z13);title(滤波后的信号波形,fontweight,bold);axis(00000 100000 -1 1);grid;结果如下:可以看出,滤波后将原始信号绝大部分频谱滤掉,剩下噪声信号,不能采用。(3) IIR带通滤波器设计y,fs,nbits=wavread (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于MATLAB的有噪声的语音信号处理的课程设计 基于 MATLAB 噪声 语音 信号 处理 课程设计
限制150内