大学物理学答案北京邮电大学第3版赵近芳等编著 .doc
《大学物理学答案北京邮电大学第3版赵近芳等编著 .doc》由会员分享,可在线阅读,更多相关《大学物理学答案北京邮电大学第3版赵近芳等编著 .doc(107页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大学物理学(北邮第三版)习题及解答(全)习题一1-1 与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.有(式中叫做单位矢),则式中就是速度径向上的分量,不同如题1-1图所示. 题1-1图 (3)表示加速度的模,即,是加速度在切向上的分量.有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r,然后根据=,及而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,
2、即 =及= 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计(1)以时
3、间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算0 s时刻到4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算4 s 时质点的速度;(5)计算0s 到4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)解:(1) (2)将,代入上式即有 (3) (4) 则 (5) (6) 这说明该点只有方向的加速度,且为恒量。1-4 在离水面高h米的岸上,有人用绳子拉船靠岸,船在离岸S处,如题1-4图所示当人以
4、(m)的速率收绳时,试求船运动的速度和加速度的大小 图1-4解: 设人到船之间绳的长度为,此时绳与水面成角,由图可知 将上式对时间求导,得 题1-4图根据速度的定义,并注意到,是随减少的, 即 或 将再对求导,即得船的加速度1-5 质点沿轴运动,其加速度和位置的关系为 2+6,的单位为,的单位为 m. 质点在0处,速度为10,试求质点在任何坐标处的速度值解: 分离变量: 两边积分得 由题知,时,, 1-6 已知一质点作直线运动,其加速度为 4+3,开始运动时,5 m,=0,求该质点在10s 时的速度和位置 解: 分离变量,得 积分,得 由题知,,故 又因为 分离变量, 积分得 由题知 ,故 所
5、以时1-7 一质点沿半径为1 m 的圆周运动,运动方程为 =2+3,式中以弧度计,以秒计,求:(1) 2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45角时,其角位移是多少? 解: (1)时, (2)当加速度方向与半径成角时,有即 亦即 则解得 于是角位移为1-8 质点沿半径为的圆周按的规律运动,式中为质点离圆周上某点的弧长,,都是常量,求:(1)时刻质点的加速度;(2) 为何值时,加速度在数值上等于解:(1) 则 加速度与半径的夹角为(2)由题意应有即 当时,1-9 半径为的轮子,以匀速沿水平线向前滚动:(1)证明轮缘上任意点的运动方程为,式中/是轮子滚动的角速度,当与水平线
6、接触的瞬间开始计时此时所在的位置为原点,轮子前进方向为轴正方向;(2)求点速度和加速度的分量表示式解:依题意作出下图,由图可知题1-9图(1) (2)1-10 以初速度20抛出一小球,抛出方向与水平面成幔60的夹角,求:(1)球轨道最高点的曲率半径;(2)落地处的曲率半径(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示题1-10图(1)在最高点,又 (2)在落地点,,而 1-11 飞轮半径为0.4 m,自静止启动,其角加速度为=0.2 rad,求2s时边缘上各点的速度、法向加速度、切向加速度和合加速度解:当时,则1-12 如题1-12图,物体以相对的速度沿
7、斜面滑动,为纵坐标,开始时在斜面顶端高为处,物体以匀速向右运动,求物滑到地面时的速度解:当滑至斜面底时,则,物运动过程中又受到的牵连运动影响,因此,对地的速度为题1-12图1-13 一船以速率30kmh-1沿直线向东行驶,另一小艇在其前方以速率40kmh-1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何? 解:(1)大船看小艇,则有,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 方向北偏西 (2)小船看大船,则有,依题意作出速度矢量图如题1-13图(b),同上法,得方向南偏东1-14 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后2 m的甲板上,篷高4 m 但
8、当轮船停航时,甲板上干湿两部分的分界线却在篷前3 m ,如雨滴的速度大小为8 ms-1,求轮船的速率解: 依题意作出矢量图如题1-14所示题1-14图 由图中比例关系可知习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为的物体,另一边穿在质量为的圆柱体的竖直细孔中,圆柱可沿绳子滑动今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度下滑,求,相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计)解:因绳不可伸长,故滑轮两边绳子的加速度均为,其对于则为牵连加速度,又知对绳子的相对加速度为,故对地加速度,由图(b)可知,为 又因绳的质量不计,所
9、以圆柱体受到的摩擦力在数值上等于绳的张力,由牛顿定律,有 联立、式,得讨论 (1)若,则表示柱体与绳之间无相对滑动(2)若,则,表示柱体与绳之间无任何作用力,此时, 均作自由落体运动题2-1图2-2 一个质量为的质点,在光滑的固定斜面(倾角为)上以初速度运动,的方向与斜面底边的水平线平行,如图所示,求这质点的运动轨道解: 物体置于斜面上受到重力,斜面支持力.建立坐标:取方向为轴,平行斜面与轴垂直方向为轴.如图2-2.题2-2图方向: 方向: 时 由、式消去,得2-3 质量为16 kg 的质点在平面内运动,受一恒力作用,力的分量为6 N,-7 N,当0时,0,-2 ms-1,0求当2 s时质点的
10、 (1)位矢;(2)速度解: (1)于是质点在时的速度(2)2-4 质点在流体中作直线运动,受与速度成正比的阻力(为常数)作用,=0时质点的速度为,证明(1) 时刻的速度为;(2) 由0到的时间内经过的距离为()1-;(3)停止运动前经过的距离为;(4)证明当时速度减至的,式中m为质点的质量答: (1) 分离变量,得即 (2) (3)质点停止运动时速度为零,即t,故有 (4)当t=时,其速度为即速度减至的.2-5 升降机内有两物体,质量分别为,且2用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速g上升时,求:(1) 和相对升降机的加速度(2)在地面上观察,的加
11、速度各为多少?解: 分别以,为研究对象,其受力图如图(b)所示(1)设相对滑轮(即升降机)的加速度为,则对地加速度;因绳不可伸长,故对滑轮的加速度亦为,又在水平方向上没有受牵连运动的影响,所以在水平方向对地加速度亦为,由牛顿定律,有题2-5图联立,解得方向向下(2) 对地加速度为 方向向上在水面方向有相对加速度,竖直方向有牵连加速度,即 ,左偏上2-6一质量为的质点以与地的仰角=30的初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对轴对称
12、性,故末速度与轴夹角亦为,则动量的增量为由矢量图知,动量增量大小为,方向竖直向下2-7 一质量为的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞并在抛出1 s,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为因小球为平抛运动,故小球落地的瞬时向下的速度大小为,小球上跳速度的大小亦为设向上为轴正向,则动量的增量方向竖直向上,大小 碰撞过程中动量不守恒这是因为在碰撞过程中,小球受到地面给予的冲力作用另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守
13、恒2-8 作用在质量为10 kg的物体上的力为N,式中的单位是s,(1)求4s后,这物体的动量和速度的变化,以及力给予物体的冲量(2)为了使这力的冲量为200 Ns,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度ms-1的物体,回答这两个问题解: (1)若物体原来静止,则,沿轴正向,若物体原来具有初速,则于是,同理, ,这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理(2)同上理,两种情况中的作用时间相同,即亦即 解得,(舍去)2-9 一质量为的质点在平面上运动,其位置矢量为求质点的动
14、量及0 到时间内质点所受的合力的冲量和质点动量的改变量解: 质点的动量为将和分别代入上式,得,则动量的增量亦即质点所受外力的冲量为2-10 一颗子弹由枪口射出时速率为,当子弹在枪筒内被加速时,它所受的合力为 F =()N(为常数),其中以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量(3)求子弹的质量解: (1)由题意,子弹到枪口时,有,得(2)子弹所受的冲量将代入,得(3)由动量定理可求得子弹的质量2-11 一炮弹质量为,以速率飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为,且一块的质量为另一块质量的倍,如两者仍
15、沿原方向飞行,试证其速率分别为+, -证明: 设一块为,则另一块为,及于是得 又设的速度为, 的速度为,则有 联立、解得 将代入,并整理得于是有 将其代入式,有又,题述爆炸后,两弹片仍沿原方向飞行,故只能取证毕2-12 设(1) 当一质点从原点运动到时,求所作的功(2)如果质点到处时需0.6s,试求平均功率(3)如果质点的质量为1kg,试求动能的变化解: (1)由题知,为恒力, (2) (3)由动能定理,2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同解: 以
16、木板上界面为坐标原点,向内为坐标正向,如题2-13图,则铁钉所受阻力为题2-13图第一锤外力的功为 式中是铁锤作用于钉上的力,是木板作用于钉上的力,在时,设第二锤外力的功为,则同理,有 由题意,有 即 所以, 于是钉子第二次能进入的深度为2-14 设已知一质点(质量为)在其保守力场中位矢为点的势能为, 试求质点所受保守力的大小和方向解: 方向与位矢的方向相反,即指向力心2-15 一根劲度系数为的轻弹簧的下端,挂一根劲度系数为的轻弹簧,的下端一重物,的质量为,如题2-15图求这一系统静止时两弹簧的伸长量之比和弹性势能之比解: 弹簧及重物受力如题2-15图所示平衡时,有题2-15图又 所以静止时两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理学答案北京邮电大学第3版赵近芳等编著 大学 物理学 答案 北京邮电 版赵近芳 编著
限制150内