华师大版初中数学知识点梳理.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《华师大版初中数学知识点梳理.docx》由会员分享,可在线阅读,更多相关《华师大版初中数学知识点梳理.docx(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、华师大版初中数学知识点梳理华师大版初中数学知识点梳理第一单元 数与式第 1 讲 实 数(1)按定义分正有理数(2)按正、负性分(1)0 既不属于正数,也不属于负数.(2)无理数的几种常见形式判断:含的式有理数0负有理数有限小数或正实数无限循环小数实数 0子;构造型:如 3.010010001(每两个 1之间多个 0)就是一个无限不循环小数;实数开方开不尽的数:如,;三角函数型:如正无理数负实数sin60,tan25.无理数无限不循环小数(3)失分点警示:开得尽方的含根号的数属于负无理数有理数,如=2,=-3,它们都属于有理数.知识点一:实数的概念及分类关键点拨及对应举例1. 实数知识点二 :实
2、数的相关概念(1)三要素:原点、正方向、单位长度例:2. 数轴3. 相反数4. 绝对值(2)特征:实数与数轴上的点一一对应;数轴右边的点表示的数总比左边的点表示的数大(1) 概念:只有符号不同的两个数(2) 代数意义:a、b 互为相反数 a+b=0(3) 几何意义:数轴上表示互为相反数的两个点到原点的距离相等(1) 几何意义:数轴上表示的点到原点的距离(2) 运算性质:|a|=a (a0); |a-b|=a-b(ab)-a(a0).b-a(ab)(3) 非负性:|a|0,若|a|+b2=0,则 a=b=0.数轴上-2.5 表示的点到原点的距离是2.5. a 的相反数为-a,特别的 0 的绝对值
3、是 0.例:3 的相反数是-3,-1 的相反数是 1.(1)若|x|=a(a0),则 x=a.(2)对绝对值等于它本身的数是非负数.例:5 的绝对值是 5;|-2|=2;绝对值等于3 的是3;|1-|=-1.5. 倒数(1) 概念:乘积为 1 的两个数互为倒数.a 的倒数为 1/a(a0)例:(2) 代数意义:ab=1a,b 互为倒数-2 的倒数是-1/2 ;倒数等于它本身的数有1.知识点三 :科学记数法、近似数(1)形式:a10n,其中 1|a|10,n 为整数例:6. 科学记数法7. 近似数(2)确定 n 的方法:对于数位较多的大数,n 等于原数的整数为减去 1;对于小数,写成 a10-n
4、,1|a|10,n 等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)(1) 定义:一个与实际数值很接近的数.(2) 精确度:由四舍五入到哪一位,就说这个近似数精确到哪一位.21000 用科学记数法表示为 2.1104;19 万用科学记数法表示为 1.9105;0.0007 用科学记数法表示为 710-4.例:3.14159 精确到百分位是 3.14;精确到 0.001 是 3.142.知识点四 :实数的大小比较8. 实数的大小比较(1) 数轴比较法:数轴上的两个数,右边的数总比左边的数大.例:(2) 性质比较法:正数0负数;两个负数比较大小,绝对值把 1,-2,0,-2.3
5、按从大到小的顺序排大的反而 小.列结果为10-2-2.3_.(3) 作差比较法:a-b0ab;a-b=0a=b;a-b0ab.(4) 平方法:ab0a2b2.知识点五 :实数的运算9. 乘 方零次幂几个相同因数的积; 负数的偶(奇)次方为正(负) a0=_1_(a0)例:(1)计算:1-2-6=_-7 ;(-2)2=4 ;常负指数幂a-p=1/ap(a0,p 为整数)3-1=_1/3_;0= 1 ;见平方根、2 aa(2)64 的平方根是_8 ,算术平方根是运算术平方根算若 x =a(a0),则x=.其中是算术平方根. 8_,立方根是 4 .立方根若 x3=a,则 x= 3 a失分点警示:类似
6、 “的算术平方根”计10. 混合运算先乘方、开方,再乘除,最后加减;同级运算,从左 向右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号一次进行.计算时,可以结合运算律,使问题简单化算错误.例:相互对比填一填:16 的算术平方根是 4,的算术平方根是2 .知识点一:代数式及相关概念第 2 讲 整式与因式分解关键点拨及对应举例1. 代数式2. 整 式(1) 代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,单独的一个数或一个字母也是代数式(2) 求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做求代数式的值(1) 单项式:表示数字与字母积的
7、代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.求代数式的值常运用整体代入法计算.例:ab3,则 3b3a9.例:(1)下列式子:-2a2;3a-5b;x/2;2/x;7a2;7x2+8x3y;2017.其中属于( 单 (2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高单项式的是;多项式是;项式、的项的次数叫做多项式的次数.同类项是和.多 项 (3)整式:单项式和多项式统称为整式.式)(4)同类项:所含字母相同并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.知识点二:整式的运算3.(1)合并同类项法
8、则:同类项的系数相加,所得的结果作为系数,字母和字母的指整 式数不变(2) 多项式 7m5n-11mn2+1 是六次三项式,常数项是 1 .失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,的 加 (2)去括号法则: 若括号外是“”,则括号里的各项都不变号;若括号外是“”,减 运则括号里的各项都变号.算(3)整式的加减运算法则:先去括号,再合并同类项. (1)同底数幂的乘法:amanamn;不要有漏项.例:2(3a2b1)6a4b2.(1)计算时,注意观察,善于运用它们的逆4. 幂 运算 法则(2)幂的乘方:(am)namn; (3)积的乘方:(ab)nanbn;(4)
9、同底数幂的除法:amanamn (a0).其中 m,n都在整数运算解决问题.例:已知 2m+n=2,则 3 2m2n=6.(2)在解决幂的运算时,有时需要先化成同底数.例:2m4m=23m.5. 整 式的 乘(1) 单项式单项式:系数和同底数幂分别相乘;只有一个字母的照抄 (2)单项式多项式: m(a+b)=ma+mb.(3) 多项式多项式:(m+n)(a+b)=ma+mb+na+nb.(4) 单项式单项式:将系数、同底数幂分别相除.(5) 多项式单项式:多项式的每一项除以单项式;商相加失分警示:计算多项式乘以多项式时,注意不能漏乘,不能丢项,不能出现变号错.例:(2a1)(b2)2ab4ab
10、2.除 运 ( 6 )算乘法公式平方差公式:(ab)(ab)a2b2.完全平方公式:(ab)2a22abb2. 变形公式:a2+b2=(ab)22ab,ab=【(a+b)2-(a2+b2)】 /2注意乘法公式的逆向运用及其变形公式的运用6. 混合运算注意计算顺序,应先算乘除,后算加减;若为化简求值,一般步骤为:化简、代入替换、计算例:(a-1)2-(a+3)(a-3)-10=_-2a .知识点五:因式分解(1) 定义:把一个多项式化成几个整式的积的形式7. 因式分解(2) 常用方法:提公因式法:mambmcm(abc).公式法:a2b2(ab)(ab);a22abb2(ab)2.(3) 一般步
11、骤:若有公因式,必先提公因式;提公因式后,看是否能用公式法分解;检查各因式能否继续分解.(1) 因式分解要分解到最后结果不能再分解为止,相同因式写成幂的形式;(2) 因式分解与整式的乘法互为逆运算第 3 讲 分 式知识点一:分式的相关概念关键点拨及对应举例在判断某个式子是否为分式时,应注意:(1)判1. 分式的(1) 分式:形如 A (A,B 是整式,且 B 中含有字母,B0)B断化简之间的式子;(2)是常数,不是字母.例:下列分式:; ; 2 x + 2 ,其中是分概念的式子.(2) 最简分式:分子和分母没有公因式的分式.(1) 无意义的条件:当 B0 时,分式 A 无意义;式是;最简分式
12、.x2 - 12. 分式的意义B(2) 有意义的条件:当 B0 时,分式 A 有意义;B失分点警示:在解决分式的值为 0,求值的问题时,一定要注意所求得的值满足分母不为 0.x2 -1(3) 值为零的条件:当 A0,B0 时,分式 A 0.B例: 当的值为 0 时,则 x-1.x -1( 1 ) 基本性质:A ACA C=(C0)B B CB C由分式的基本性质可将分式进行化简:3. 基本性(2)由基本性质可推理出变号法则为:例:化简:x2 - 1= x - 1 .质A- A-(- A)A- AAx2 + 2 x + 1x + 1=; -=.B-BBBB-B知识点三 :分式的运算(1) 约分(
13、可化简分式):把分式的分子和分母中的公因式约去, 分式通分的关键步骤是找出分式的最即 am = a ;简公分母,然后根据分式的性质通分.4. 分式的约分和通分bmb11+( -1)(2) 通分(可化为同分母):根据分式的基本性质,把异分母的分 例:分式 2和的最简公分母xxx x为 ( 2 -1)式化为同分母的分式,即 a , c ac , bdb dbc bcx x.(1)同分母:分母不变,分子相加减.a bab例:1 +x1.即.5. 分式的即cc c ;x - 11 - x加减法(2)异分母:先通分,变为同分母的分式,再加减.acadbc1 + 1= 2a .(1)a cacacadb
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 师大 初中 数学 知识点 梳理
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内