专题1 圆锥曲线的离心率问题(原卷版)-2021年高考数学圆锥曲线中必考知识专练.doc
《专题1 圆锥曲线的离心率问题(原卷版)-2021年高考数学圆锥曲线中必考知识专练.doc》由会员分享,可在线阅读,更多相关《专题1 圆锥曲线的离心率问题(原卷版)-2021年高考数学圆锥曲线中必考知识专练.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题1:圆锥曲线的离心率问题(原卷版)一、单选题1已知双曲线的离心率为2,则( )A2BCD12已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率( )ABCD3已知AB为椭圆的左、右顶点,F为左焦点,点P为椭圆上一点,且PFx轴,过点A的直线与线段PF交于M点,与y轴交于E点,若直线BM经过OE中点,则椭圆的离心率为( )ABCD4设,是双曲线的左、右焦点,是坐标原点,过作的一条渐近线的垂线,垂足为.若,则的离心率为( )ABCD5已知F是椭圆C:(ab0)的右焦点,点P在椭圆C上,线段PF与圆相切于点Q,(其中为椭圆的半焦距),且则椭圆C的离心率等于( )ABCD6
2、已知双曲线的渐近线方程为,则该双曲线的离心率为( )ABCD7已知椭圆的右焦点为,过点作轴的垂线交椭圆于,两点,若,则椭圆的离心率等于( )ABCD8已知过双曲线的右焦点F,且与双曲线的渐近线平行的直线l交双曲线于点A,交双曲线的另一条渐近线于点B(A,B在同一象限内),满足,则该双曲线的离心率为( )ABCD29已知双曲线的焦距为4,则该双曲线的离心率为( )ABCD10已知双曲线的一条渐近线的斜率为,则双曲线的离心率为( )ABCD211过椭圆的左焦点的直线过的上端点,且与椭圆相交于点,若,则的离心率为( )ABCD12设双曲线的左、右焦点分别为,过的直线与双曲线的右支交于两点,若,且是的
3、一个四等分点,则双曲线C的离心率是( )ABCD5二、填空题13已知焦点在x轴上的椭圆的左、右焦点分别为、,直线l过,且和椭圆C交于A,B两点,与的面积之比为3:1,则椭圆C的离心率为_.14已知是椭圆与双曲线的公共焦点,P是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为_.15已知双曲线的左右焦点分别为,直线过点交双曲线右支于,两点,若,则双曲线的离心率为_.16已知直线与双曲线的一条渐近线交于点,双曲线的左、右顶点分别为,若,则双曲线的离心率为_.17设,是椭圆的两个焦点.若在上存在一点,使,且,则的离心率为_.18设为椭圆的左焦点,为上第一象限的一点.若,则椭圆的离心率为_19如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且,则该椭圆的离心率是_.20已知双曲线的左、右顶点分别为A、B,点,若线段的垂直平分线过点B,则该双曲线的离心率为_.例21设双曲线 (0ab)的半焦距为c,直线l过(a,0),(0,b)两点,且原点到直线l的距离为c,求双曲线的离心率例22过双曲线的一个焦点F作一条渐近线的垂线,若垂足恰在线段(O为原点)的垂直平分线上,求双曲线的离心率.23双曲线的左右焦点为,是双曲线上一点,满足,直线与圆相切,求双曲线的离心率.3原创精品资源学科网独家享有版权,侵权必究!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题1 圆锥曲线的离心率问题原卷版-2021年高考数学圆锥曲线中必考知识专练 专题 圆锥曲线 离心 问题 原卷版 2021 年高 数学 必考 知识
限制150内