专题30 极坐标与参数方程的应用(学生版).docx
《专题30 极坐标与参数方程的应用(学生版).docx》由会员分享,可在线阅读,更多相关《专题30 极坐标与参数方程的应用(学生版).docx(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 方法技巧专题30 极坐标与参数方程的应用 一、极坐标与参数方程的应用知识框架 二、极坐标与参数方程的应用题型分析 【一】轨迹方程的问题一、极坐标方程1圆的极坐标方程若圆心为M(0,0),半径为r的圆方程为220cos(0)r20.几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r:r;(2)当圆心位于M(a,0),半径为a:2acos;(3)当圆心位于,半径为a:2asin.2直线的极坐标方程若直线过点M(0,0),且极轴到此直线的角为,则它的方程为:sin()0sin (0)几个特殊位置的直线的极坐标方程(1)直线过极点:0和0;(2)直线过点M(a,0)且垂直于极轴:cos a;
2、(3)直线过且平行于极轴:sin b.二、参数方程直线、圆、椭圆的参数方程1.例题【例1】在极坐标系中,已知圆的圆心,半径,点在圆上运动以极点为直角坐标系原点,极轴为轴正半轴建立直角坐标系(1)求圆的参数方程;(2)若点在线段上,且,求动点轨迹的极坐标方程【例2】在平面直角坐标系中,圆的参数方程为(为参数),以点为极点,轴的正半轴为极轴建立极坐标系.(1)求圆的极坐标方程;(2)过极点作直线与圆交于点,求的中点所在曲线的极坐标方程.【例3】已知圆C经过点P,圆心C为直线sin与极轴的交点,求圆C的极坐标方程2.巩固提升综合练习【练习1】 (2019年高考全国卷理数)在极坐标系中,O为极点,点在
3、曲线上,直线l过点且与垂直,垂足为P(1)当时,求及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程【练习2】在极坐标系中,已知圆C经过点P,圆心为直线sin()与极轴的交点,求圆C的极坐标方程【练习3】 (2019年高考全国卷理数)如图,在极坐标系Ox中,弧,所在圆的圆心分别是,曲线是弧,曲线是弧,曲线是弧(1)分别写出,的极坐标方程;(2)曲线由,构成,若点在M上,且,求P的极坐标【二】转化中的应用问题 一、极坐标的转化问题互化的前提依旧是把直角坐标系的原点作为极点,x轴的正半轴作为极轴并在两种坐标系下取相同的单位长度互化公式为,直角坐标方程化极坐标方程可直接
4、将xcos ,ysin 代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为cos ,sin 的整体形式,然后用x,y代替较为方便,常常两端同乘以即可达到目的,但要注意变形的等价性二、参数方程的消参问题1.消参的常用方法(1)代入消参法,是指由曲线的参数方程中的某一个(或两个)得到用x(或y,或x,y)表示参数的式子,把其代入参数方程中达到消参的目的(2)整体消参法,是指通过恰当的变形把两式平方相加(或相减、相乘、相除)达到消参的目的,此时常用到一些桓等式,如sin2cos21,sec2tan21,224等2消参的注意事项(1)消参时,要特别注意参数的取值对变量x,y的影响,否则易扩大变
5、量的取值范围(2)参数方程中变量x,y就是参数的函数,可用求值域的方法确定变量x,y的取值范围【例1】已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2sin .()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)【练习1】在平面直角坐标系中,直线的参数方程为为参数在以原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为()求直线的极坐标方程和曲线的直角坐标方程;()若直线与曲线交于两点,求【三】最值、几何意义的综合问题 1.距离最值(点到点、曲线点到线、)距离的最值: -用“参数法”(1)曲线上的点到
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题30 极坐标与参数方程的应用学生版 专题 30 坐标 参数 方程 应用 学生
限制150内