【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf
《【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf》由会员分享,可在线阅读,更多相关《【T112017-数据工程和技术分会场】物联网和人工智能领域内置芯片分析的意外之旅.pdf(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Future-proofing BI:an unexpected journey to leverageIn-Chip analytics in IoT and AIAni ManianHead of Product Strategy|TalkingdataSIMPLIFYING Business Analytics for COMPLEX Data“The key strength of Sisense is the platforms capability to easily handle and manage large and diverse datasets,and analyze
2、them in dashboards based on its proprietary In-Chip technology.”-Gartner Magic Quadrant|TalkingdataHOW IT ALL STARTED|TalkingdataWHAT DO FIVE DATA GEEK STUDENTS DREAM ABOUT?|TalkingdataWELL,BELIEVING THEYRE BADASS THEYRE DREAMING OF|TalkingdataBEER&CHIPS|TalkingdataBeerDataIN ORDER TO UNDERSTAND IN-
3、CHIPANALYTICSLETS ASSUME THAT:|TalkingdataMEMORY HIERARCHY IN MODERN CPUSL3 CacheCapacity:6MB-20MBLatency:35 CyclesL2 CacheCapacity:256KB-1MBLatency:10 CyclesL1 CacheCapacity:64KB-128KBLatency:3 CyclesCPUMain MemoryCapacity:GBs-TBsLatency:150-450 CyclesRAMRAMRAMDiskCapacity:UnlimitedLatency:1M Cycle
4、sDISK|TalkingdataSO,WHY SHOULD WE EVEN CARE?Slowdown when fetching new data to the CPUx50SlowdownMain MemoryUp tox100 x10SlowdownL3 Cachex3SlowdownL2 Cache|TalkingdataMEMORY BANDWIDTH L1 cacheHome fridge DistanceImmediateCustomerx1L2/l3 cacheShopDistanceBicycleCustomerx10RamSupermarketDistanceCar Cu
5、stomerx50DiskBreweryDistanceAirplaneCustomerIf data equals beer then data storage units equal all the places beer is kept!|TalkingdataTHERE SHOULD HAVE BEEN A SLIDE HERE.(its the beers fault)How does Sisense overcome the memory bottleneck?|TalkingdataStore all data on the DiskOnly Use RAM When a Que
6、ry RunsLoad Only the Relevant Columns in RAMHOW DOES SISENSE OVERCOME THE MEMORY BOTTLENECK?VECTORIZATIONJIT LLVM&SIMD|TalkingdataVECTORIZATION&CACHE AWARENESSL1 CacheFirst into RAMOP1004K(Values)1004K(Values)1004K(Values)Result VectorPush Back To RAM1004K(Values)SIMD REGISTERApply Operation On 4/8
7、Data Elements SimultaneouslyOPOPColumn 41004K(Values)ResultVector1004K(Values)Column 11004K(Values)Column 21004K(Values)Column 31004K(Values)|TalkingdataJIT LLVM COMPILATION WITH SIMD SUPPORTint f int a,int b)elsem0m1m2m3m0m1m2m3Return a;a0a1a2a3returna=0;a0a1a2a30000withmaskm0m1m2m3if a 0)m0m1m2m3a
8、0a1a2a310=0/=1OR&Mask Vectorf2 Vector“Customer 1”“Customer 2”OR&Mask Vectorf3 Vector“1”/”2”/”3”OR&Mask VectorL1 CacheField Vector=ValueMask Vector=True/FalseSELECT(f1=“beer1”OR f1=“beer2”)ANDFROM T1(f2=“customer1”OR f2=“customer2”)ANDWHERE(f3=“1”OR f3=“2”OR f3=“3”)AND(f4”10”OR f4=“0”OR f4=“1”)|Talki
9、ngdataNEXT:PERFORMANCE TUNING FOR MANY USERSADD INSTANCESADD HARDWAREOPTIMIZE DATA MODELHOW CAN YOU DELAY USING THESE OPTIONS?|TalkingdataPROBLEM:THE WAITING LINE TO QUERY DATAThe queue means a user wait is extended by each user in front of themUSERSSECONDSCPU|TalkingdataQUERYS BUILDING BLOCKS:THE I
10、NSTRUCTION SETS|TalkingdataCROWD SPEED:MACHINE LEARNING ARCHITECTUREBreak each query into partsStore each query part and learn Build new queries with matching parts to boost performanceQUERYEXECUTIONSPEED|TalkingdataRE-USE REPEATING INSTRUCTION SETS ACROSS QUERIES#1HOW MANY UNITS DID WE SELL?New Que
11、ry#2WHAT WERE THE MONTHLY SALES?Already calculated units sold#3WHO WERE THE TOP SALES REPS EACH MONTH?Already calculated units sold&Monthly breakdown of unitsSimilar but non-identical queries|TalkingdataMACHINE LEARNING BIWith Machine Learning BI,analytics get faster even when queries are not identi
12、cal.The more questions you throw at it-the more efficient it gets!More users=more queries=faster resultsNo matchMatch found|TalkingdataIN-CHIP=POWER+MACHINE LEARNINGLeverage the unique in-chip cache memory to perform faster than in-memoryWithout the limitation of having to load the entire model into
13、 RAMIn-Chip recognizes the CPU specs and applies its unique code to organize the query data in the CPUWhen needed again,that piece of data exists in the CPU cache,which is much faster than RAMIn-Chip machine-learns to fetch the associated compressed result sets in advanceSub-query results pre-loaded
14、 into L1 cache as compressed dataDecompressed images of that same data can be moved to the larger,but slower,L2 and L3 caches Decompression operations(read from and write to cache)are extremely fast|TalkingdataIN-CHIP TECHNOLOGYThe best engine beer can buyIn memory columnar execution modeCACHE aware
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- T112017-数据工程和技术分会场 T112017 数据 工程 技术 分会 联网 人工智能 领域 内置 芯片 分析 意外
限制150内