流体力学流体动力学微分形式基本方程市公开课一等奖百校联赛特等奖课件.pptx
《流体力学流体动力学微分形式基本方程市公开课一等奖百校联赛特等奖课件.pptx》由会员分享,可在线阅读,更多相关《流体力学流体动力学微分形式基本方程市公开课一等奖百校联赛特等奖课件.pptx(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、流流 体体 力力 学学 退 出中国科学文化出版社第1页第二篇 流体动力学基本原理及流体工程 流体动力学微分形式基本方程 流体动力学积分形式基本方程 伯努利方程及其应用 量纲分析和相同原理 流动阻力与管道计算 边界层理论 流体绕过物体流动 气体动力学基础 第五章第六章第七章第八章第九章退 出返 回第十章第十一章第十二章第2页 第五章 流体动力学微分形式基本方程 连续性方程 理想流体运动方程 实际流体运动方程 第一节第二节第三节退 出返 回第3页 流体运动须遵照物质运动一些普遍规律,如质量、动量质量、动量和能量守恒定律和能量守恒定律。这些普遍规律应用于流体运动就可得到联络流体速度、密度、压力、温度
2、等参数之间关系式,这些关系式称为流体动力学基本方程。基本方程能够对微元体建立,得到微分形式基本方程;也能够对控制体建立,经过对控制体和控制面积分而得到流体参数间积分关系式。求解微分形式基本方程或求解对微元控制体建立积分形式基本方程,能够给出流场细节,即空间各点上压力、温度、速度、密度等流体参数分布。本章讨论微分形式基本方程。第五章 流体动力学微分形式基本方程 退 出返 回第第1页页第4页第五章 流体动力学微分形式基本方程 退 出返 回第一节 连续性方程 第第2页页图 5.1 正六面体流体微团x zydydxdzwxdydz o在研究流体运动时,对于流体量处理上必须遵照物质不灭原理。因为流体充满
3、整个流场,连续不停运动,所以在流体力学中物质不灭原理又称为连续性原理。反应这个原理数学关系式叫做连续性方程。一、笛卡儿坐标系统连续性方程在流场中取一六面体微团,其边长为,(图5.1)。沿 方向在单位时间内流入六面体流体质量为沿方向在单位时间内流出六面体流体沿方向在单位时间内净流出质量为六面体流体质量为第5页第五章 流体动力学微分形式基本方程 退 出返 回第一节 连续性方程第第3页页同理可得:沿方向在单位时间内净流出六面体流体质量为沿方向在单位时间内净流出六面体流体质量为单位时间内净流出整个六面体流体质量为另外,流体密度随时间改变也影响六面体中流体质量。设在时刻流体密度为 时刻流体密度为 ,则在
4、单位时间内因为密度改变而使六面体中增加流体质量为,第6页第五章 流体动力学微分形式基本方程 退 出返 回第一节 连续性方程第第4页页依据连续流动原理,净流出六面体流体质量与六面体中流体增加量之和为零,六面体中流体质量是不变,即式(5.1)就是流体连续性方程。将上式展开,而且注意到(5.1)则连续性方程也可写成写成向量形式(5.3)(5.3a)或(5.2)第7页第五章 流体动力学微分形式基本方程 退 出返 回第一节 连续性方程第第5页页对于稳定流动,于是式(5.1)变为即 (5.4a)(5.4)对于不可压缩流体,为常数,则连续性方程为(5.5)(5.5a)即第8页第五章 流体动力学微分形式基本方
5、程 退 出返 回第一节 连续性方程第第6页页o图 5.2 扇形六面体流体微团zArB drDCdzdr二、圆柱坐标系统连续性方程在圆柱坐标系统中,取一扇形六面体流体微团ABCD,如图5.2所表示。单位时间内流入AB、BC、CA面流体质量分别为,单位时间内流出CD、DA、BD面流体质量分别为,第9页第五章 流体动力学微分形式基本方程 退 出返 回第一节 连续性方程第第7页页单位时间内,微团中净流出流体质量为因为微团中流体密度增加而使微团中增加流体质量为依据连续性原理,微团中流体质量总改变应等于零,所以此即圆柱坐标系统连续性方程。(5.6)对于不可压缩流体,为常数,连续性方程为(5.7)第10页第
6、五章 流体动力学微分形式基本方程 退 出返 回第二节 理想流体运动方程第第1页页图 5.3 流体微团在x方向所受力x zydydxdzpdydzXo 运动方程描述流体在运动中所受力与流动参量之间关系。理想流体是指无粘性流体。工程实践中流体都是含有粘性,它们并不是理想流体,但在很多情况下,流体粘性力和其它力比起来作用很小,因而可视为理想流体。一、理想流体运动方程建立建立运动方程基础是牛顿第二运动定律。在理想流体流场中取出一微小六面体微团。微团所受力有表面力(压力)和体积力(质量力)。六面体在 轴方向上所受表面力和单位质量体积力如图5.3所表示。设单位质量体积力为X、Y、Z,则在轴方向依据牛顿第二
7、运动定律应有第11页第五章 流体动力学微分形式基本方程 退 出返 回第第2页页化简得、轴方向力平衡关系式,于是有同理可推导得到(5.8)第二节 理想流体运动方程第12页第五章 流体动力学微分形式基本方程 退 出返 回第第3页页式中,称为单位质量体积力矢量。(5.8a)(5.8)式就是理想流体运动方程,它是欧拉于1755年提出,故又称欧拉运动方程。它给出了压力、体积力与惯性力关系。对于给定流体(密度已知,或者已知压力与密度关系,比如气体方程),在已知体积力场(即X、Y、Z已知)内,依据此式和连续性方程进行积分,可解出任意时刻 t,流场中任意位置(x,y,z)p,wx,wy,wz。不过实际对该式进
8、行解析计算是有困难,往往需要给定限制条件。最简单限制条件是讨论沿流线运动和无旋流场。这两种情况都是有现实意义,后面将详细讨论。第二节 理想流体运动方程第13页第五章 流体动力学微分形式基本方程 退 出返 回第第4页页欧拉方程在圆柱坐标系统中形式,能够用上述一样方法得到,在流场中取微小扇形六面体微团,然后依据牛顿第二运动定律列出微团力平衡方程,从而得到该坐标系统欧拉运动方程,详细形式以下(5.9)式中、分别为单位质量体积力在r、z方向分量。第二节 理想流体运动方程第14页、p、T,除了用欧拉方程和连续性方程外,还要增加状态方程和能量方程来求解。求解理想流体运动问题主要依靠欧拉方程和连续性方程。方
9、程是普遍,但各个问题初始条件和边界条件不一样,所以对各个详细问题应作详细分析。初始条件是指流体运动开始瞬时所对应条件。在理想流体力学问题中,所要求是第五章 流体动力学微分形式基本方程 退 出返 回第第5页页二、理想流体运动方程求解对不可压缩流体流动,未知量为p、连续性方程就能求解。对可压缩流体流动,其未知量有、p、T,所以,在 时,这些物理量,故欧拉方程加上数值应是给出,即第二节 理想流体运动方程第15页第五章 流体动力学微分形式基本方程 退 出返 回第第6页页其中,f1至f6是给定函数。对于稳定流动,流场中各点物理量不随时间改变,所以不存在初始条件。边界条件是指所求物理量在边界上取值。如对静
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 流体力学 流体动力学 微分 形式 基本 方程 公开 一等奖 联赛 特等奖 课件
限制150内