经济数学第三章导数省公共课一等奖全国赛课获奖课件.pptx
《经济数学第三章导数省公共课一等奖全国赛课获奖课件.pptx》由会员分享,可在线阅读,更多相关《经济数学第三章导数省公共课一等奖全国赛课获奖课件.pptx(142页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、calculus3.1 导数概念导数概念3.2 求导基本公式与求导运算法则求导基本公式与求导运算法则3.3 微分微分3.4 高阶导数和高阶微分高阶导数和高阶微分第三章第三章 导数与微分导数与微分3.5 边际与弹性边际与弹性本章计划课时本章计划课时:14课时课时1微积分 第三章导数与微分第1页calculus3.1 导数概念导数概念引例引例1、变速直线运动瞬时速度、变速直线运动瞬时速度一、引例一、引例2微积分 第三章导数与微分第2页calculus(1)当物体作匀速运动时(2)当物体作变速运动时3微积分 第三章导数与微分第3页calculus引例引例2 平面曲线切线斜率平面曲线切线斜率 在点求曲
2、线L:处切线斜率。割线 MN 斜率为:4微积分 第三章导数与微分第4页calculus割线 MN 极限位置 MT 称为曲线 L 在点 M 处切线。切线 MT 斜率为:当时,5微积分 第三章导数与微分第5页calculus二、导数定义二、导数定义6微积分 第三章导数与微分第6页calculus7微积分 第三章导数与微分第7页calculus8微积分 第三章导数与微分第8页calculus9微积分 第三章导数与微分第9页calculus10微积分 第三章导数与微分第10页calculus11微积分 第三章导数与微分第11页calculus三、导数几何意义三、导数几何意义12微积分 第三章导数与微分
3、第12页calculus四、单边(侧)导数四、单边(侧)导数13微积分 第三章导数与微分第13页calculus14微积分 第三章导数与微分第14页calculus一样单边导数定义式也可简化为:15微积分 第三章导数与微分第15页calculus例.求函数在在处导数.解解所以所以,函数函数在在处不可导处不可导.思索思索16微积分 第三章导数与微分第16页calculus五、可导性与连续性关系五、可导性与连续性关系若函数若函数在在处可导处可导,则必连续则必连续.实际上实际上,因因在在处可导处可导,即即定理定理2.1所以所以,函数函数在在处连续处连续.17微积分 第三章导数与微分第17页calcu
4、lus例例.求函数求函数在在处导数处导数.解解所以所以,函数函数在在处不可导处不可导.0问题:连续是否一定可导?问题:连续是否一定可导?18微积分 第三章导数与微分第18页calculus19微积分 第三章导数与微分第19页calculus1-120微积分 第三章导数与微分第20页calculus函数在其可导点处一定连续函数在其可导点处一定连续函数在其不连续点处一定不可导函数在其不连续点处一定不可导函数在其连续点处不一定可导函数在其连续点处不一定可导结论结论21微积分 第三章导数与微分第21页calculus六、用定义求导数举例六、用定义求导数举例一样单边导数定义式也可简化为:22微积分 第三
5、章导数与微分第22页calculus例例1.求函数求函数(常数常数)导数导数.解解常数导数等于零常数导数等于零例例2.求函数求函数导数导数.解解23微积分 第三章导数与微分第23页calculus例例3.求指数函数求指数函数导数导数.解解24微积分 第三章导数与微分第24页calculus例例4.设设求求解解尤其地尤其地,25微积分 第三章导数与微分第25页calculus例例5.设设求求解解正弦函数导数等于余弦函数正弦函数导数等于余弦函数.类似得类似得,余弦函数导数等于负正弦函数余弦函数导数等于负正弦函数.26微积分 第三章导数与微分第26页calculus注:分段函数分段点导数必须用定义求
6、注:分段函数分段点导数必须用定义求例例6.设函数设函数解解因为27微积分 第三章导数与微分第27页calculus例例7.解解28微积分 第三章导数与微分第28页calculus方法一:方法一:例例8.解解29微积分 第三章导数与微分第29页calculus30微积分 第三章导数与微分第30页calculus方法二:方法二:31微积分 第三章导数与微分第31页calculus32微积分 第三章导数与微分第32页calculus解解例例9.33微积分 第三章导数与微分第33页calculus由导数几何意义知,所求切线斜率为:所求切线方程为:即所求法线方程为:即解解例例11.34微积分 第三章导数
7、与微分第34页calculus3.2 求导基本公式与求导运算法则求导基本公式与求导运算法则一、四则运算求导法则一、四则运算求导法则35微积分 第三章导数与微分第35页calculus证证:设则有故结论成立.推论推论:(C为常数)36微积分 第三章导数与微分第36页calculus37微积分 第三章导数与微分第37页calculus证毕证毕.38微积分 第三章导数与微分第38页calculus例例1.解解39微积分 第三章导数与微分第39页calculus解解:例例2.40微积分 第三章导数与微分第40页calculus求解解例例3.41微积分 第三章导数与微分第41页calculus例例4.解
8、解42微积分 第三章导数与微分第42页calculus解解例例5.43微积分 第三章导数与微分第43页calculus惯用公式:惯用公式:44微积分 第三章导数与微分第44页calculus二、反函数求导法则二、反函数求导法则45微积分 第三章导数与微分第45页calculus46微积分 第三章导数与微分第46页calculus解解例例5.47微积分 第三章导数与微分第47页calculus解解例例6.48微积分 第三章导数与微分第48页calculus三、基本导数公式三、基本导数公式49微积分 第三章导数与微分第49页calculus50微积分 第三章导数与微分第50页calculus51微
9、积分 第三章导数与微分第51页calculusGuess四、复合函数求导法则四、复合函数求导法则52微积分 第三章导数与微分第52页calculus53微积分 第三章导数与微分第53页calculus54微积分 第三章导数与微分第54页calculus法则法则5(连锁法则连锁法则)Outfunctioninnerfunction55微积分 第三章导数与微分第55页calculus证证在点在点可导,可导,由由知由极限与无穷小关系知由极限与无穷小关系知于是于是56微积分 第三章导数与微分第56页calculus即即57微积分 第三章导数与微分第57页calculus解解.例例1 求以下函数导数58
10、微积分 第三章导数与微分第58页calculus更更简简明明过过程程59微积分 第三章导数与微分第59页calculus解解例例2.更简明更简明过程过程60微积分 第三章导数与微分第60页calculus解解例例3.61微积分 第三章导数与微分第61页calculus例例4.解解62微积分 第三章导数与微分第62页calculus复合函数求导法则能够推广到多重复合情形复合函数求导法则能够推广到多重复合情形.设设则则或或63微积分 第三章导数与微分第63页calculus例例.求解解64微积分 第三章导数与微分第64页calculus更简明更简明过程过程65微积分 第三章导数与微分第65页cal
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经济 数学 第三 导数 公共课 一等奖 全国 获奖 课件
限制150内