解直角三角形的应用省公开课一等奖新名师优质课比赛一等奖课件.pptx
《解直角三角形的应用省公开课一等奖新名师优质课比赛一等奖课件.pptx》由会员分享,可在线阅读,更多相关《解直角三角形的应用省公开课一等奖新名师优质课比赛一等奖课件.pptx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、解直角三角形应用第1课时 第1页在直角三角形中,除直角外,由已知两元素 求其余未知元素过程叫解直角三角形.1.解直角三角形(1)三边之间关系:a2b2c2(勾股定理);2.解直角三角形依据(2)两锐角之间关系:A B 90;(3)边角之间关系:(必有一边)ACBabc知识回顾第2页问题:(书本117页“做一做”)小明在距旗杆4.5m点D处,仰视旗杆顶端A,仰角为50;俯视旗杆底部B,俯角为18.求旗杆高.(结果准确到0.1m).小明ADB视线视线水平线4.5OC地平线解读:仰角、俯角是指视线与水平线夹角.如:AOC是仰角.BOC是俯角.情景导入第3页已知:如图,OD、AB均与BD垂直,垂足分别
2、为点D、B,OC/BD,BD=4.5m,AOC=50;BOC=18.求AB长度.(结果准确到0.1m).ADB4.5OC获取新知一起探究解:由题意可得,OC=BD=4.5在RtOCB 中在RtAOC中AB=AC+BC=1.44+5.36=6.8第4页东西北南O(1)正东,正南,正西,正北(2)西北方向:_ 西南方向:_ 东南方向:_ 东北方向:_ 射线OAABCDOB OC OD45射线OE射线OF射线OG射线OHEGFH454545认识方位角第5页O北南西东(3)南偏西2525北偏西70 南偏东60ABC射线OA射线OB射线OC7060认识方位角第6页例1 如图所表示,一艘渔船以30海里/时
3、速度由西向东航线.在A处看见小岛C在船北偏东60方向上,40min后,渔船行驶到B处,此时小岛C在船北偏东30方向上.已知以小岛C为中心,10海里为半径范围是多暗礁危险区.假如这艘渔船继续向东航线,有没有进入危险区可能.BCA北3060解读:方位角:视线与正南(或正北)方向夹角.思索:怎样判断渔船有没有可能进入危险区?例题讲解第7页BCA北3060分析:只需要计算垂线段CD长度即可.CD即渔船与小岛最近距离,当CD10时,没有危险;当CD10时,有危险.D第8页BCA北3060DEF转化为数学问题:如图,AB长为 海里,EAC=60,FBC=30,求CD长.第9页20BCA北3060DEF方法
4、一:解:过点C作CDAB延长线于点D.则CBD=60,设BD=x在RtBCD中CD=BDtanCBD=3x在RtACD中,解得,x=10渔船不会进入危险区.两个直角三角形BCD与ACD各用一次三角函数第10页20BCA北3060DEF方法二:解:过点C作CDAB延长线于点D.则CBD=60,设CD=x在RtBCD中在RtACD中,渔船不会进入危险区.两个直角三角形BCD与ACD各用一次三角函数第11页20BCA北3060DEF方法三:解:过点C作CDAB延长线于点D.则CBD=90-30=60,1=90-60=302=1=30BC=AB=20在RtBCD中渔船不会进入危险区.把已知数值导入Rt
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直角三角形 应用 公开 一等奖 名师 优质课 比赛 课件
限制150内