全等三角形总复习市公开课一等奖百校联赛获奖课件.pptx
《全等三角形总复习市公开课一等奖百校联赛获奖课件.pptx》由会员分享,可在线阅读,更多相关《全等三角形总复习市公开课一等奖百校联赛获奖课件.pptx(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、全等三角形(复习)全等三角形(复习)第1页一、全等三角形一、全等三角形1.1.什么是全等三角形?一个三角形经过哪些改变能够得什么是全等三角形?一个三角形经过哪些改变能够得到它全等形?到它全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?能够完全重合两个三角形叫做全等三角形。一个三能够完全重合两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转能够得到它全等形角形经过平移、翻折、旋转能够得到它全等形(1 1)全等三角形对应边相等、对应角相等。)全等三角形对应边相等、对应角相等。(2 2)全等三角形周长相等、面积相等。)全等三角形周长相等、面积相等。(3 3)全等三角形对应边上对应
2、中线、角平分线、)全等三角形对应边上对应中线、角平分线、高线分别相等。高线分别相等。第2页2.全等三角形判定全等三角形判定:普通三角形全等判定:普通三角形全等判定:SAS、ASA、AAS、SSS直角三角形全等判定:直角三角形全等判定:SAS、ASA、AAS、SSS、HL第3页普通三角形普通三角形 全等条件全等条件:1.1.定义(重合)法;定义(重合)法;2.SSS2.SSS;3.SAS3.SAS;4.ASA4.ASA;5.AAS.5.AAS.直角三角形直角三角形 全等全等特有特有条件:条件:HLHL.包含直角三角形包含直角三角形不包含其它形不包含其它形状三角形状三角形解题解题中惯中惯用用4 4
3、种方种方法法第4页3.三角形全等证题思绪:三角形全等证题思绪:第5页1.1.证实两个三角形全等,要结合题目标条件和结论,选证实两个三角形全等,要结合题目标条件和结论,选择恰当判定方法择恰当判定方法2.2.全等三角形,是证实两条全等三角形,是证实两条线段线段或两个或两个角角相等主要方法相等主要方法之一,证实时之一,证实时 要观察待证线段或角,在哪两个可能全等三角形要观察待证线段或角,在哪两个可能全等三角形中。中。分析分析要证两个三角形全等,已经有什么条件,还要证两个三角形全等,已经有什么条件,还缺什么条件。缺什么条件。有有公共边公共边,公共边公共边一定是对应边,一定是对应边,有有公共角公共角,公
4、公共角共角一定是对应角,有一定是对应角,有对顶角对顶角,对顶角对顶角也是对应角也是对应角总之,证实过程中能用简单方法就不要绕弯路。总之,证实过程中能用简单方法就不要绕弯路。第6页例题选讲例题选讲1 1:如图,D在AB上,E在AC上,且B=C,那么补充以下一具条件后,仍无法判定ABEACD是()AAD=AE B AEB=ADCCBE=CD DAB=ACB第7页2 2:已知:如图,CDAB,BEAC,垂足分别为D、E,BE、CD相交于O点,1=2,图中全等三角形共有()A1对 B2对 C3对 D4对 D第8页3.3.如图:在如图:在ABCABC中,中,C=90C=900 0,ADAD平分平分 BA
5、CBAC,DEABDEAB交交ABAB于于E E,BC=30BC=30,BDBD:CD=3CD=3:2 2,则,则DE=DE=。12cABDE第9页4 4 已知:已知:ACBCACBC,BDADBDAD,AC=BD.AC=BD.求证:求证:BC=AD.BC=AD.ABCD第10页5 5:下面条件中,不能证出RtABCRtA BC是 (A.)AC=AC,BC=BC (B.)AB=AB,AC=AC(C.)AB=BC,AC=AC (D.)B=B,AB=ABC 第11页 6:如图,在ABC 中,AD BC,CE AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当条件:,使ADBCEB。BE=
6、BDBA=BCDA=EC第12页7:求证:三角形一边上中线小于其它两边之和二分之一。:求证:三角形一边上中线小于其它两边之和二分之一。已知:如图,已知:如图,AD是是ABC 中线,求证:中线,求证:ABCDE证实:中线延长它一倍中线延长它一倍第13页课堂练习课堂练习1.1.已知已知BDBDCDCD,ABDABDACDACD,DEDE、DFDF分别分别垂直于垂直于ABAB及及ACAC交延长线于交延长线于E E、F F,求证:,求证:DEDEDFDF第14页2.点A、F、E、C在同一直线上,AFCE,BE=DF,BEDF,求证:ABCD。证实:第15页4.4.已知,已知,ABCABC和和ECDEC
7、D都是等边三角形,且点都是等边三角形,且点B B,C C,D D在一条直线上求证:在一条直线上求证:BE=ADBE=AD EDCAB证实证实:ABC和和ECD都是等边三角形都是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACDBCE (SAS)BE=AD第16页 EDCAB3.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上求证:在一条直线上求证:BE=AD变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C顺时针旋转
8、一定顺时针旋转一定角度,以上结论还成立吗?角度,以上结论还成立吗?当顺时针旋转当顺时针旋转10时,时,第17页 3.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上求证:在一条直线上求证:BE=AD变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C顺时针旋转一定顺时针旋转一定角度,以上结论还成立吗?角度,以上结论还成立吗?当顺时针旋转当顺时针旋转60时,时,EDCAB第18页 3.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上求证:在一条直线上求证:BE=AD变式:变式:以上条件不变,将以上条件不变
9、,将ABC绕点绕点C顺时针旋转一定顺时针旋转一定角度,以上结论还成立吗?角度,以上结论还成立吗?当顺时针旋转当顺时针旋转120时,时,EDCAB第19页 3.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上求证:在一条直线上求证:BE=AD变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C顺时针旋转一定顺时针旋转一定角度,以上结论还成立吗?角度,以上结论还成立吗?当顺时针旋转当顺时针旋转180时,时,EDCAB第20页 3.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上求证:在一条直线上求证:BE=
10、AD变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C顺时针旋转一定顺时针旋转一定角度,以上结论还成立吗?角度,以上结论还成立吗?当顺时针旋转当顺时针旋转240时,时,EDCAB第21页4.已知,已知,ABC和和ECD都是等边三角形,当都是等边三角形,当ABC绕点绕点C顺时针旋转顺时针旋转时,连接时,连接BE,DA;结论;结论BE=AD还成立吗还成立吗?若成立请加以证实。?若成立请加以证实。EDCABEDCAB 第22页引申:引申:.已知,已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在一条直线上,在一条直线上,AC与与BE相交于相交于M,CE与与AD相交于
11、相交于N,试判定,试判定形状形状 EDCABMN解:解:是等边三角形是等边三角形证实:证实:()先证()先证ACE()证实()证实BCEACDBECADC()在证()在证MCENCDCM=CN第23页5:如图,已知:如图,已知E在在AB上,上,1=2,3=4,那么那么AC等于等于AD吗?为何?吗?为何?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBCEBD (AAS)BC=BD 在在ABC和和ABD中中 AB=AB 1=2 BC=BD ABCABD (SAS)AC=AD第24页6:如图,已知,如图,已知,ABDE,AB=DE,AF=D
12、C。请问图中有那几对全等三角形?请任选一对给予请问图中有那几对全等三角形?请任选一对给予证实。证实。FEDCBA答:答:ABCDEF证实:ABDE A=D AF=DC AF+FC=DC+FC AC=DF在在ABC和和DEF中中 AC=DF A=D AB=DE ABCDEF (SAS)第25页7:如图,已知,:如图,已知,EGAF,请你从下面三个条件中,再,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正选出两个作为已知条件,另一个作为结论,推出一个正确命题。(只写出一个情况)确命题。(只写出一个情况)AB=AC DE=DF BE=CF 已知:已知:EGAF 求证:求证:
13、GFEDCBA高高第26页8.如图,在等边如图,在等边ABC中,中,D,E,F分别为分别为AB,BC,CA上点,(不是中点)且上点,(不是中点)且ADBECF,图,图中全等三角形有那些?中全等三角形有那些?解:共六个解:共六个AFEDCBGIHBEHCFIBHBCICAGBEBCFCADHFBIDCGEBFBCDCAE第27页8引申如图,在等边引申如图,在等边ABC中,中,D,E,F分别为分别为AB,BC,CA上点,上点,(不是中点)且(不是中点)且DEF也是等边三角形,图中()除已知相等边也是等边三角形,图中()除已知相等边外,还有那些相等线段?()你所证实相等线段,能够经过怎样外,还有那些
14、相等线段?()你所证实相等线段,能够经过怎样改变相互得到?写出改变过程改变相互得到?写出改变过程解:()解:()AE=BF=CDAF=BD=CE(2)这些相等线段能够看出平移)这些相等线段能够看出平移 旋旋转而得到,如转而得到,如AE和和BF,把,把AE绕这绕这A点沿顺时针方向选旋转点沿顺时针方向选旋转,再,再沿着沿着AB方向平移使点方向平移使点A至点至点F即可得即可得到到BF,其余类同,其余类同AFEDCB第28页8引申如图,在等边引申如图,在等边ABC中,中,D,E,F分别为分别为AB,BC,CA上点,上点,(不是中点)且(不是中点)且DEF也是等边三角形,图中()除已知相等边也是等边三角
15、形,图中()除已知相等边外,还有那些相等线段?()你所证实相等线段,能够经过怎样外,还有那些相等线段?()你所证实相等线段,能够经过怎样改变相互得到?写出改变过程改变相互得到?写出改变过程解:()解:()AE=BF=CDAF=BD=CE(2)这些相等线段能够看出平移)这些相等线段能够看出平移 旋旋转而得到,如转而得到,如AE和和BF,把,把AE绕这绕这A点沿顺时针方向选旋转点沿顺时针方向选旋转,再,再向下然后再向左平移使点向下然后再向左平移使点A至点至点F即即可得到可得到BF,其余类同,其余类同AFEDCB第29页.阅读了解阅读了解()假如两个三角形均为直角三角形,显然它们全等()假如两个三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 复习 公开 一等奖 联赛 获奖 课件
限制150内