自动化自动控制电气自动化毕业设计.docx
《自动化自动控制电气自动化毕业设计.docx》由会员分享,可在线阅读,更多相关《自动化自动控制电气自动化毕业设计.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、毕业设计外文文献翻译学 号:姓 名:所在院系:专业班级:_指导教师:原文标题:Power-plant Control and Instrumentation - The Controlof Boilers and HRSG Systems2022年4月 日 drum level is below the desired value, that is where it will stay, because if everything is set up correctly the feed into the boiler will always match the steam flowing o
2、ut of it, and there is no mechanism for introducing the small surfeit of feed over steam, or the slight deficit, that is needed to correct the drum-level error.It is important to consider the practical reality of what would happen if things were not to be set up correctly. In this situation, if ther
3、e is a small setting error in the controller gain, or if the feed valve passes more or less water than it should at the given opening, or if the steam flow transmitter is slightly out of Calibration, the drum level will integrate up or down at a rate determined by the scale of the error, and nothing
4、 will correct for this undesirable state of affairs.In other words, the system cannot correct the drum level if this parameter deviates from the desired value either because of an initial error or because of small errors in the steam-flow measurement or nonlinearities between the valve demand and th
5、e actual flow through it. In the example given above, the exact gain required is 0.909 09 . Therefore, if the controller gain were to be set to 0.91 as suggested above, the feed-water flow would be slightly greater than the steam flow, and the drum level will gradually increase.To counter these effe
6、cts it is necessary to add a feedback element, consisting of another controller which will act to correct for any mismatch.108 Power-plant control and instrumentation between the actual and desired drum levels. Figure 6.2 shows one variety of such a two-elementsystem.Steam flowG In such a system, be
7、cause the drum volume and the steam and feed flows form an integrating system, with the drum level integrating any steam-flow/feed-flow mismatch, it is unnecessary to employ an additional integration function in the controller. Therefore the drum-level controller should be of the proportional-only v
8、ariety.The correct gain for this controller can be determined from a knowledge of the swell and shrinkage effects within the boiler. If these are not known they can be determined by test. A suitable test would be to change the steam flow as rapidly as possible by, say, 10% of the maximum evaporation
9、 rate of the boiler, while keeping the feed flow instep with the steam flow. (This can be achieved by hooking a feed-flow signal into the system while temporarily disabling the drum-level controller).To see how the information on the boilers swell characteristic can be used to help with controller t
10、uning, let us examine a two-element system where the range of the steam-flow transmitter is ranged as above (0-20 kg/s), and the feed valve is again sized to deliver 22 kg/s when it is 100% open. Assume that the drum-level transmitter is ranged to produce 4 mA when the water level has dropped below
11、the setpoint by 250 mm, and that it is 20 mA when the level is 250 mm above the setpoint (i.e. a range of 500 mm). Finally, assume that a test as described above has determined that the swell resulting from a sudden 10% change of steam flow raises the drum level by 80 mm.If the drum-level controller
12、 is to exactly counteract the effect of swell, it must produce an output that cancels out the step change in the steam flow, which was 10%. The controller output must therefore change by 10% when the input error changes by 16%, which means that the gain must be 0.625 ( 10 + 16).When the steam-flow a
13、nd pressure changes have settled out and the water level has returned to the set point, the level-controller output will again become zero. The valve opening will then revert to tracking slow changes in the steam flow, as described earlier.This analysis depends on the swell effect being constant ove
14、r the boiler load range, which may or may not be true, but it provides a practical method of tuning this type of system, and will produce a fairly good performance over a wide range of conditions. Theoretically, better results could be obtained by carrying out tests to determine the swell effect at
15、various points in the load range and introducing a nonlinear function within the level controller to compensate for the differences across the range. But this is rather complicated for what is essentially a simple system and in any case performance is likely to be limited by the other serious defici
16、encies within the system, which we shall examine in the next section, which discusses a more comprehensive system, known as three-element control.译文:给水控制和仪器仪表6.1 给水控制原则控制给水控制系统的宗旨似乎很简单: 它是提供足够的水产生于锅炉匹配的挥发率。 但正像普通 锅炉的情况,完成这个任务是一件很复杂的事。有艰难甚而在做控制系统取决于的基本的鼓筒水位测 量。控制系统的设计是研究发生在锅炉系统之内和由实际的许多互作用,其中一些的互作用是在
17、锅炉的 装载范围的各种各样的点。控制系统设计师的任务是开辟一个方案,提供足够的控制下的最大可行的操作情况,这样做,既安全合 算。 要做到这些必须了解给水和蒸汽系统的详细的机制和充分地运作要求。在几乎所有的最小、最简单的锅炉,每一个相关因素必须考虑,这是不够的,依靠简单的反应似乎是这个参数相关的给水: 蒸流程、给水流程和水鼓的级别。6.2 第一,二和三元素控制一级水鼓提供了一个直接含水的锅炉。如果流进104发电厂控制和仪器仪表系统的水大于质量流量 蒸汽,则水鼓中的水位将上升。相反,如果蒸汽输出大于饲料流入,水位也会下降。如第2章,鼓的目的不仅是分开的水蒸汽,而且还提供一个储存库,使短期之间的不平
18、衡饲料供水 和蒸汽生产要处理无风险的植物。随着水位的鼓上升,风险增加的水结转到蒸汽电路。结果这种结转 可以是灾难性的:冷水管道热冲击会导致极端的和局部应力金属,反过来说,如果水位下降,有可能锅 炉损坏,部份原因损失的基本冷却炉水墙。因此,给水控制系统的目标是要保持鼓中的水位大约在船的中点。鉴于这一目标,最简单的解决办法 似乎是衡量一级的水鼓和调整给水,以保持这一价值的理想给水更多的进入鼓中,如果水位上升,则 进鼓的水位下降。不幸的是,水位受瞬态变化压力的影响,鼓和责任感在不同的水平不一定是相关的, 其中饲料的流动必须调整。换句话说,假设它是不够的,只是因为水位提高给水流量必须降低,反之亦 然。
19、这个奇怪的情况是由于膨胀和缩水影响的。沸水包括大量的流体含有许多蒸汽气泡,随着沸腾速 率上升泡沫生成数量也不断增加。水和泡沫的混合物类似于泡沫,它的体积取决于它所占领双方的水量 和蒸汽气泡的数额。如果系统内的压力降低,饱和温度也降低,因此沸腾率增加(因为温度较高的混合 物,现在是直接关系到饱和度温度比原来的压力变化)。随着沸腾率的增加,水的密度减小,但由于大 量的水蒸气和水并没有改变下跌的密度必须辅之以数量增加的混合物。通过这种原理使鼓中水位上升的现象称为膨胀。上升的水位是误导性的:它不是一个真正的指示性 的增加,这就需要的减少供水量维持现状。事实上,如果下降的压力,是由于蒸汽的需求蓦地增加,
20、水 的供应需要增加,以配合增加蒸汽流量。1攵缩是相反的膨胀:它发生在压力上升过程中。该机制是彻底一样的,对于膨胀,但在相反方向。 收缩导致水位在鼓下降时,蒸汽流量减少,并再次提供水的锅炉必须与实际需要,而不是可能误导性的 说明所提供的鼓级别发射机。如果一个缓慢变化的蒸汽流量时,一切都很好,因为系统内的压力可以得到控制。这是当快速蒸汽 流量变化的情况,即浮现问题,因为,由于膨胀或者收缩,对汽包水位提供了相反的迹象表明,对水的 需 求。后蓦地增加,蒸汽的需求,从而导致压力下降(因此,汽包水位上升),一个简单的一级控制器 将作出反应,减少了流通给水。同样,蓦地下降,蒸汽流量,这将是伴有着上升的压力和
21、随之而来的下 降,汽包水位,将导致一级控制器增加水流。这两项行动,固然,在不正确的意义。膨胀的影响和收缩,除了正在确定的变化率的压力,还取决于政府的相对规模的鼓和压力,其运作。 如果该卷的鼓大,涉及的数量,整个系统的影响将小于其他。如果系统压力低的影响将大于一个锅炉运行在更高的压力,因为影响的某一特定压力变化对密度的水将有更大的中低压锅炉将比如果同一压力的 变化是发生在锅炉运行在更高的压力。面对这种情况,设计的控制系统已作出反应,实施了各种解决方案。其中最简单的方法是两个元 素的系统,因为它是基于使用两个过程测量代替单一鼓级别测量上面使用。6.2.1 二元给水控制记住的基本要求的给水控制系统,
22、是维持一个恒定的水量锅炉,很明显,一个途径解决这一问题将 是保持水流到系统中,价值匹配流动的蒸汽了。其中一个版本的这个系统是如图6.1 o在这里,流控制 的一个容易确认的设备,一个阀门。我们将看看阀门更深入以后,但目前承担的版本中所使用图表率保 持水流通过阀门时这个数字是成正比的需求信号控制器(即如果需求信号不同线性从0到100 % ,流 速也呈线性变化介于0和100 % ) o这种阀是说有一个线性特点和在系统中显示这是一起雇用发射 机产生的信号比例蒸汽流量。一起使用,这两个器件参数保持在步骤。如果发射机产生的信号等于蒸汽 流量在所有负载,如果流经阀是符合这个信号在每一个点的流动范围,控制器增
23、益的团结将确保在整个 动态范围该系统,水流将永远是平等的,以流动的蒸汽。now0-20 kQ/sT-I4 mA OkQ/s 20 mA 20 kQ/sFIC4 mA 0% open 0 kg/s20 mA 100% open 22 k.sFead How 0 22 kg/s布出6.1tMtnW ba it 4 ow“ onb固然,规模因素的发射器和阀门,必须考虑到。如果一系列的流量变送器不同于阀的流量控制范围 内,控制器增益将需要作相应调整,并在实际系统,这是永远需要的。为了提供足够的业务利润的信心,各种控制阀的设计总是大于流动范围锅炉。例如,在锅炉生产 20公斤/s的蒸汽阀门可能是中小企业提
24、供二十二公斤/s的水时,它是彻底开放。在这个例子中,以线 性阀的特点,开放约91 %将需要通过一个流动的20公斤/秒。在这种情况下,如果蒸汽流量变送器生产的产量,100 %在20公斤/ s的流量,控制器增益必须 是这样的,一个测量值的100 %产生最大输出功率为91 % o这是一个比例带110 (即增益20/22 ), 如果这个增益分配给控制器饲料流将符合蒸汽流量的整个范围内的锅炉负荷(假设阀特点是直线,即输 出的流量变送器是4毫安在零流量,而且零水流发生在阀信号为0 % ) o这个系统的问题是,它不仅符合蒸汽和饲料流率。如果在一开始,汽包水位低于所期望的价值,这 就是它会留下来,因为如果一切
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动化 自动控制 电气 毕业设计
限制150内