线性代数在量子力学中的应用实例.doc
《线性代数在量子力学中的应用实例.doc》由会员分享,可在线阅读,更多相关《线性代数在量子力学中的应用实例.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数在量子力学中的应用实例作者:寿立夫摘要:利用泡利自旋矩阵可以简化电子自旋这一双态系统,并且具备相当的普遍意义,可以适用于一般的量子系统;我们试图在N态系统中寻找一组基础态使之标准正交,为此我们仿照实对称矩阵的证明,证明含复数的哈密顿矩阵总是可以被相似对角化的,并且可以通过Gram-Schmidt法则将其化为标准正交向量组。在此基础上,我们研究了具有四个基础态的氢的超精细分裂问题并由所得结果计算出氢的两个超精细态之间的“21cm谱线“。关键词:泡利矩阵 ;N态系统; 氢的超精细分裂;线性代数引言自海森堡创立矩阵力学以来,随着叠加原理在量子力学中的广泛使用,使得线性代数成为了描述和研究量子
2、系统的强有力工具,在初步学习了相关线性代数知识后,我们已经有了足够的知识储备去探究量子世界的奥妙,在此选取几个例子粗浅地展示下线性代数在量子力学中的一些简单应用。1 泡利自旋矩阵1.1 背景知识1.1.1 振幅与态矢量由于量子力学本身的特殊性,所以它有一套独特的符号体系。下面引述维基百科的概念:1在量子力学里,一个量子系统的量子态可以抽象地用态矢量来表示。态矢量存在于内积空间。定义内积空间为增添了一个额外的内积结构的矢量空间。态矢量满足矢量空间所有的公理。态矢量是一种特殊的矢量,它也允许内积的运算。态矢量的范度是1,是一个单位矢量。标记量子态的态矢量为。每一个内积空间都有单范正交基。态矢量是单
3、范正交基的所有基矢量的线性组合:;其中,是单范正交基的基矢量,是单范正交基的基数, 是的分量,是投射于基矢量的分量,也是处于的概率幅。1维基百科“态矢量词条”. 换一种方法表达:。在狄拉克标记方法里,态矢量称为右矢。对应的左矢为,是右矢的厄米共轭,用方程表达为;其中,象征为取厄米共轭。设定两个态矢量,。定义,的内积为。结果是一个复数。1.1.2 哈密顿矩阵现在我们令表示时刻t处在基础态i的振幅,则在只考虑态矢随时间变化的简单情况下,我们可以得到以下齐次线性微分方程组:i= 因为量子系统的幺正性,所以.1.2 泡利矩阵1.2.1磁场中电子自旋的自旋方程i=i=通过观察我们可以写出如下泡利自旋矩阵
4、:= = 1=将哈密顿矩阵改写为:若将视为向量,即则可以得到:与经典物理中的磁矩为的磁体处在磁场为B中的能量的经典公式:有相似的形式,这是因为经典力学是量子力学的近似的缘故。1.2.2 泡利矩阵的性质= 12 N态系统2.1 N态系统的能级 因为为齐次线性微分方程组,设,现在我们对其施加一个线性变换,则:为使方程组无耦合项,则,哈密顿矩阵可以相似对角化,则=,为H的特征值,则被化为如下形式:,可见为该N态系统的n个能级所具有的能量.2.2 哈密顿矩阵的相似对角化我们知道哈密顿矩阵具有性质,由于哈密顿矩阵可以为复数,事实上对于实对称矩阵而言,所以我们猜测哈密顿矩阵也可以被相似对角化;现在我们根据
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 量子力学 中的 应用 实例
限制150内