RogerAntonsen_2015X[罗杰安东森][理解世界的秘诀数学].pdf
《RogerAntonsen_2015X[罗杰安东森][理解世界的秘诀数学].pdf》由会员分享,可在线阅读,更多相关《RogerAntonsen_2015X[罗杰安东森][理解世界的秘诀数学].pdf(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、www.XiYuS锡育软件I want to talk about understanding,and the nature ofunderstanding,and what the essence of understanding is,because understanding is something we aim for,everyone.(鼓点和踩镲声)理解到底是什么,因为我们都在追求理解。00:14We want to understand things.我们想理解世间万物。00:24My claim is that understanding has to do with the
2、 ability tochange your perspective.我认为理解是一种能力,转变(固有)观点的能力。00:27If you dont have that,you dont have understanding.如果我们缺乏它,就说明我们缺乏理解力。00:32So that is my claim.这是我的结论。00:36And I want to focus on mathematics.我想重点讲讲数学。00:37Many of us think of mathematics as addition,subtraction,multiplication,division,fr
3、actions,percent,geometry,algebra all that stuff.很多人认为,数学就是 加,减,乘,除,分数,百分数,几何,代数等等。00:40But actually,I want to talk about the essence of mathematicsas well.但今天,我也想讲讲数学的本质,00:50And my claim is that mathematics has to do with patterns.我的观点是,数学跟模式有关。00:53Behind me,you see a beautiful pattern,and this pa
4、tternactually emerges just from drawing circles in a veryparticular way.在我身后,是一个美丽的图案,而这个图案,实际上是通过特定方式 不断画圆组成的。00:57aim for:瞄准;以为目标 subtraction:n.数减法;减少;差集 multiplication:n.数乘法;增加 fractions:n.数分数;小部分,片段(fraction的复数)geometry:n.几何学/几何结构 algebra:n.代数学 emerges:vi.浮现;摆脱;暴露So my day-to-day definition of m
5、athematics that I use everyday is the following:First of all,its about finding patterns.所以我对数学有一个的定义 非常直白:首先,数学的关键是寻找模式。01:05And by pattern,I mean a connection,a structure,someregularity,some rules that govern what we see.这里的模式指的是某种联系、结构,或者规律、规则,这些东西控制了我们所见的事物。01:16Second of all,I think it is about
6、representing these patternswith a language.其次,我认为数学是一种语言,用来描述各种模式。01:24We make up language if we dont have it,and inmathematics,this is essential.如果没有现成的语言,就需要创造一种。在数学中,这点尤为重要。01:29Its also about making assumptions and playing around withthese assumptions and just seeing what happens.同时,数学也需要进行假设,对假
7、设进行多方验证,看看结果如何。01:35Were going to do that very soon.我们一会儿就会这么做。01:40And finally,its about doing cool stuff.最后,数学可以用来做很酷的事情。01:42Mathematics enables us to do so many things.能帮我们完成很多事。01:46So lets have a look at these patterns.下面我们来看一些模式。01:50If you want to tie a tie knot,there are patterns.如果你想系领带,会有
8、很多种样式。01:52day-to-day:adj.日常的;逐日的 First of all:adv.首先 regularity:n.规则性;整齐;正规;匀称 representing:v.代表;表示,表现(represent的ing形式)have a look at:看一看,看一眼 knot:n.(绳等的)结;节瘤,疙瘩;海里/小时(航速单位)/vt.打结/vi.打结/Tie knots have names.每一种都有名字。01:56And you can also do the mathematics of tie knots.因此领带结也包含数学。01:58This is a left
9、-out,right-in,center-out and tie.这是从左侧绕出,右侧绕入,中间抽出然后系紧的东方结。02:00This is a left-in,right-out,left-in,center-out and tie.这是从左侧绕入,右侧绕出,再左侧绕入,中间抽出,最后系紧的四手结。02:04This is a language we made up for the patterns of tie knots,and a half-Windsor is all that.这就是我们专门为领带结创造的语言,最后还有半温莎结。02:08This is a mathematics
10、 book about tying shoelaces at theuniversity level,because there are patterns in shoelaces.这是一本关于系鞋带的数学书,大学级别的,因为系鞋带也有很多种模式。02:15You can do it in so many different ways.你可以用成千上万种方式来系鞋带。02:21We can analyze it.我们可以进行分析。02:23We can make up languages for it.然后为系鞋带也创造一种语言。02:25And representations are all
11、 over mathematics.这些都可以用数学方法来表达。02:28TED演讲者:Roger Antonsen|罗杰?安东森演讲标题:Math is the hidden secret to understanding the world|理解世界的秘诀:数学内容概要:Unlock the mysteries and inner workings of the world through one of the mostimaginative art forms ever mathematics with Roger Antonsen,as he explains how a slight
12、change in perspective can reveal patterns,numbers and formulas as the gateways to empathyand understanding.跟着罗杰?安东森一起,通过最具想象力的艺术形式数学,揭秘世界的奥秘和内部运转本质。他向我们解释,细微的角度变化能帮我们理解模式、数字和公式,并指引我们通向与人共鸣和理解万物的大门。He invented a language for patterns in nature.他创造了一种语言,来描述自然界的模式。02:35When we throw something up in the
13、 air,it falls down.当我们把物品抛向空中,它会掉下来。02:39Why?为什么?02:42Were not sure,but we can represent this with mathematicsin a pattern.我们并不确定,但我们可以用数学把其归结成一种模式。02:43tying:n.结子/v.系(tie的ing形式)shoelaces:鞋带(shoelace的复数)representations:代表/表现(representation的复数)up in the air:悬而未决This is also a pattern.这也是一种模式。02:48Thi
14、s is also an invented language.是一种被发明的语言。02:49Can you guess for what?你能猜到这是什么吗?02:52It is actually a notation system for dancing,for tap dancing.这是一套表示舞蹈动作的符号,踢踏舞。02:55That enables him as a choreographer to do cool stuff,to donew things,because he has represented it.这能让舞蹈编排者,编一些炫酷的,新的动作,因为他能用符号来描述动作
15、。02:59I want you to think about how amazing representingsomething actually is.请大家想一想,表达是多么神奇的东西。03:07Here it says the word mathematics.这里写的是“数学”这个词。03:12But actually,theyre just dots,right?实际上就是一些点,对吧?03:15So how in the world can these dots represent the word?一些点怎么能表示单词呢?03:18Well,they do.确实可以。03:21
16、They represent the word mathematics,他们代表了单词“数学”,03:23and these symbols also represent that word and this we canlisten to.这些符号也一样,这次我们可以用听的。03:25It sounds like this.听起来就像这样。03:29(Beeps)Somehow these sounds represent the word and theconcept.(滴滴声)可以说,这些声音也代表了这个词和它的含义。03:30How does this happen?这是怎么做到的呢?
17、03:36Theres something amazing going on about representingstuff.表达是一种很神奇的过程。03:37notation:n.符号;乐谱;注释;记号法 choreographer:n.编舞者,舞蹈指导So I want to talk about that magic that happens when weactually represent something.所以我想跟你们讨论一下在表达过程中 发生的神奇的事情。03:41www.XiYuS锡育软件Here you see just lines with different widt
18、hs.现在你们看到的只是不同宽度的线条。03:49They stand for numbers for a particular book.这些线条代表了一本书。03:52And I can actually recommend this book,its a very nicebook.强烈推荐这本书,非常不错。03:55(Laughter)Just trust me.(笑声)真的,不骗你们。03:58OK,so lets just do an experiment,just to play around withsome straight lines.好吧,让我们来做一个实验。来玩一下直线
19、。04:01This is a straight line.这是一条直线。04:06Lets make another one.再画另外一条。04:07So every time we move,we move one down and one across,and we draw a new straight line,right?每一次我们都往下、往右移动一格,画出一条新的直线。04:08We do this over and over and over,and we look for patterns.如此反复,从中寻找一种模式。04:13So this pattern emerges,
20、and its a rather nice pattern.我们得到了这个图案,是一个非常好看的图案。04:17It looks like a curve,right?它看起来就像一道弧,对吧?04:22Just from drawing simple,straight lines.我们仅仅画了些简单的直线。04:24Now I can change my perspective a little bit.I can rotate it.现在,稍微改变一下角度,旋转一下。04:27widths:数宽度 stand for:代表;支持;象征;担任的候选人 play around:玩耍;胡搞;轻率
21、对待 over and over:反复;再三Have a look at the curve.再看这段弧。04:30What does it look like?像什么?04:32Is it a part of a circle?是不是像圆的一部分?04:33Its actually not a part of a circle.其实它不是圆的一部分。04:35So I have to continue my investigation and look for the truepattern.所以我继续探寻,找出真正的模式。04:37Perhaps if I copy it and make
22、 some art?也许我可以复制它,画一幅画?04:41Well,no.好像不行。04:45Perhaps I should extend the lines like this,and look for thepattern there.也许我应该延长这些线条,再来寻找模式。04:46Lets make more lines.再多画一些线条。04:50We do this.然后这样。04:52And then lets zoom out and change our perspective again.把它缩小,再变换角度。04:53Then we can actually see tha
23、t what started out as juststraight lines is actually a curve called a parabola.然后我们就会发现,开始的直线 变成了抛物线。04:57This is represented by a simple equation,and its a beautifulpattern.这可以用一个简单的等式表达,很美的图案。05:03So this is the stuff that we do.这就是我们所做的。05:09We find patterns,and we represent them.找到某种模式,然后表达出来。05
24、:11And I think this is a nice day-to-day definition.这是一种很直白的定义。05:13But today I want to go a little bit deeper,and think aboutwhat the nature of this is.但是今天,我想讨论得更深入一些,思考它们的本质是什么。05:16parabola:n.抛物线What makes it possible?是什么造就了这一切?05:22Theres one thing thats a little bit deeper,and that has to dowi
25、th the ability to change your perspective.要看得更深入一些,就要求我们有转换角度的能力。05:24And I claim that when you change your perspective,and ifyou take another point of view,you learn something newabout what you are watching or looking at or hearing.当你换一种角度来看问题,当你接受另一种观点,你就能在所见所闻中,学到新的东西。05:30And I think this is a r
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 罗杰安东森 理解世界的秘诀数学 RogerAntonsen_2015X 安东 理解 世界 秘诀 数学
限制150内