等差数列前N项和的公式(课堂PPT).ppt
《等差数列前N项和的公式(课堂PPT).ppt》由会员分享,可在线阅读,更多相关《等差数列前N项和的公式(课堂PPT).ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等差数列前等差数列前n项和公式项和公式1复习回顾复习回顾问题呈现问题呈现例题讲解例题讲解小结与作业小结与作业2 2复习回顾(1)等差数列的通项公式等差数列的通项公式:已知首项已知首项a1和公差和公差d,则有则有:an=a1+(n-1)d 已知第已知第m项项am和公差和公差d,则有则有:an=am+(n-m)d,d=(an-am)/(n-m)(2)等差数列的性质等差数列的性质:在等差数列在等差数列 an 中中,如果如果m+n=p+q (m,n,p,qN),那么那么:an+am=ap+aq返回返回3 泰泰姬姬陵陵坐坐落落于于印印度度古古都都阿阿格格,是是十十七七世世纪纪莫莫卧卧儿儿帝帝国国皇皇帝帝
2、沙沙杰杰罕罕为为纪纪念念其其爱爱妃妃所所建建,她她宏宏伟伟壮壮观观,纯纯白白大大理理石石砌砌建建而而成成的的主主体体建建筑筑叫叫人人心心醉醉神神迷迷,成成为为世世界界七七大大奇奇迹迹之之一一。陵陵寝寝以以宝宝石石镶镶饰饰,图图案案之之细细致致令令人叫绝。人叫绝。传传说说陵陵寝寝中中有有一一个个三三角角形形图图案案,以以相相同同大大小小的的圆圆宝宝石石镶镶饰饰而而成成,共共有有100100层层(见见左图),奢靡之程度,可见一斑。左图),奢靡之程度,可见一斑。你知道这个图案一共花了多少宝石吗?你知道这个图案一共花了多少宝石吗?问题呈现问题呈现 问题问题1下一页下一页4探究发现探究发现问题问题1:图
3、案中,第:图案中,第1层到第层到第21层一共有层一共有多少颗宝石?多少颗宝石?这这是是求求奇奇数数个个项项和和的的问问题题,不不能能简简单单模模仿仿偶偶数数个个项项求求和和的的办办法法,需需要要把把中中间间项项1111看看成成首首、尾尾两两项项1 1和和2121的等差中项。的等差中项。通过前后比较得出认识:高通过前后比较得出认识:高斯斯“首尾配对首尾配对”的算法还得分的算法还得分奇、偶个项的情况求和。奇、偶个项的情况求和。有无简单的方法?有无简单的方法?下一页下一页5探究发现探究发现问题问题1:图案中,第:图案中,第1层到第层到第21层一共有层一共有多少颗宝石?多少颗宝石?借助几何图形之借助几
4、何图形之直观性,使用熟悉的直观性,使用熟悉的几何方法:把几何方法:把“全等全等三角形三角形”倒置,与原倒置,与原图补成平行四边形。图补成平行四边形。下一页下一页6探究发现探究发现问题问题1:图案中,第:图案中,第1层到第层到第21层一共有层一共有多少颗宝石?多少颗宝石?123212120191获得算法:获得算法:下一页下一页7问题问题2 一个堆放铅笔的一个堆放铅笔的V形架形架的最下面一层放一支铅的最下面一层放一支铅笔,往上每一层都比它笔,往上每一层都比它下面一层多放一支,最下面一层多放一支,最上面一层放上面一层放100支支.这个这个V形架上共放着多少支形架上共放着多少支铅笔?铅笔?问题就是问题
5、就是 求求“1+2+3+4+100=?”下一页下一页8 问题问题2:对于这个问题,德国著名数学家高斯:对于这个问题,德国著名数学家高斯10岁时岁时曾很快求出它的结果。(你知道应如何算吗?)曾很快求出它的结果。(你知道应如何算吗?)这个问题,可看成是求等差数列这个问题,可看成是求等差数列 1,2,3,n,的前的前100项的和。项的和。假设1+2+3+100=x,(1)那么100+99+98+1=x.(2)由(1)+(2)得101+101+101+101=2x,100个101所以x=5050.高斯高斯下一页下一页9问题问题3:求求:1+2+3+4+n=?记记:S=1+2 +3 +(n-2)+(n-
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 公式 课堂 PPT
限制150内