2025八年级上册数数学(RJ)12.2 第4课时 “斜边、直角边”2.doc
《2025八年级上册数数学(RJ)12.2 第4课时 “斜边、直角边”2.doc》由会员分享,可在线阅读,更多相关《2025八年级上册数数学(RJ)12.2 第4课时 “斜边、直角边”2.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2025八年级上册数数学(RJ)12.2 第4课时 “斜边、直角边”2第4课时 “斜边、直角边”教学目标知识与技能1、已知斜边和直角边会作直角三角形;2、熟练掌握“斜边、直角边”,利用它判定一般三角形全等的方法判定两个直角三角形全等过程与方法经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力情感态度价值观通过探究与交流,解决一些问题,获得成功的体验,进步激发探究的积极性教学重点掌握判定两个直角三角形全等的特殊方法-HL教学难点熟练选择判定方法,判定两个直角三角形全等教学过程(师生活动)设计理念创设情境,引入新课提问:1.判定两个三角形全等的条件有哪些?结论:SSS、SAS
2、、AAS、ASA设置情景:根据这些条件,对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了? 今天我们就来探究两个直角三角形全等的条件复习旧知,可更快更准确地解答下面的两个直角三角形全等的条件探究新知提问:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(让学生观察课件中的两个直角三角形并思考回答)1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了2.再满足两直角边对应相等,就可用“SAS”证全等了提问:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗? (学生不能作肯定回答,只能作某种猜测)现在不要求马
3、上给出结论看看,通过动手探究,你是否能得出结论直角三角形我们用Rt表示思考: 任意画出一个RtABC,使C90,再画一个RtABC,使BCBC,ABAB,把画好的RtABC剪下,放到RtABC上,看看它们是否全等(课件出示题目,师生一起看题) (学生独立探究,动手作图)提问: (1)ABC就是所求作的三角形吗?(2)画好后,把RtABC剪下,放到RtABC上,看它们全等吗? (3)发现了什么结论?(全等) 结论:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”) 注意两点:一是“HL”是仅适用于Rt的特殊方法。二是应用“HL”时,虽只有两个条件,但必须先有两个Rt
4、的条件 4结合图形,先分析已知条件和求证从这些已知条件中,我们能发现什么?结合所求证的,你又能发现什么?(留时间让生思考)小组展示自己的成果:ACBC,BDAD,又加上ACBD,我们能找到两个Rt:RtADB,RtBCA又因为ACBD已经是一条直角边相等,我们再找到另一条件就行了 从这道题中可以看到,若已知几个垂直关系,我们可以试着找找Rt,看看这些Rt的关系若能发现全等,那就能得出对应边、对应角相等了比较判定两个直角三角形全等的条件与判定两个一般三角形全等的条件的异同点,感知直角三角形全等判定也能用已学的判定条件激发学生挑战新问题的积极性 培养学生的分析、作图能力画法直接由教师蛤出,而不安排
5、学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点 让学生表述,培养归纳、表达能力,并能进一步理解“HL”这一条件自己读题、审题,先独自证明,培养学生独自面对围难的勇气和信心 让学生上台说方法,说思路,培养学生的逻辑推理能力;展示自己的探究成果,获得成功的喜悦 巩固练习学练优课后练习小结与作业小结提高你有什么收获?你还有什么疑问?布置作业123角的平分线的性质第1课时角平分线的性质1经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理(重点)2能运用角的平分线性质定理解决简单的几何问题(难点)一、情境导入问题:在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从
6、P点建两条路,一条到公路,一条到铁路问题1:怎样修建道路最短?问题2:往哪条路走更近呢?二、合作探究探究点一:角平分线的作法 如图,ABCD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若ACD120,求MAB的度数解析:根据ABCD,ACD120,得出CAB60,再根据AM是CAB的平分线,即可得出MAB的度数解:ABCD,ACDCAB180,又ACD120,CAB60,由作法知,AM是CAB的平分线,MABCAB30.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是B
7、AC的角平分线是解题的关键探究点二:角平分线的性质【类型一】 利用角平分线的性质证明线段相等 如图:在ABC中,C90,AD是BAC的平分线,DEAB于E,F在AC上,BDDF.求证:(1)CFEB;(2)ABAF2EB.解析:(1)根据角平分线的性质,可得点D到AB的距离等于点D到AC的距离,即CDDE.再根据RtCDFRtEDB,得CFEB;(2)利用角平分线的性质证明ADC和ADE全等得到ACAE,然后通过线段之间的相互转化进行证明证明:(1)AD是BAC的平分线,DEAB,DCAC,DEDC.在RtDCF和RtDEB中,RtCDFRtEDB(HL)CFEB;(2)AD是BAC的平分线,
8、DEAB,DCAC,CDDE.在ADC与ADE中,ADCADE(HL),ACAE,ABAEBEACEBAFCFEBAF2EB.方法总结:角平分线的性质是判定线段相等的一个重要依据,在运用时一定要注意是两条“垂线段”相等【类型二】 角平分线的性质与三角形面积的综合运用 如图,AD是ABC的角平分线,DEAB,垂足为E,SABC7,DE2,AB4,则AC的长是()A6 B5 C4 D3解析:过点D作DFAC于F,AD是ABC的角平分线,DEAB,DFDE2,SABC42AC27,解得AC3.故选D.方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法【
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025八年级上册数数学RJ12.2 第4课时 “斜边、直角边”2 2025 年级 上册 数数 RJ 12.2 课时 斜边 直角
限制150内