反应釜温度过程控制优秀课程设计.docx
《反应釜温度过程控制优秀课程设计.docx》由会员分享,可在线阅读,更多相关《反应釜温度过程控制优秀课程设计.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、过程控制系统课程设计 课 题: 反应釜温度控制系统 系 别: 电气和控制工程学院 专 业: 自动化 姓 名: 彭俊峰 学 号: 指导老师: 李晓辉 河南城建学院 6月 15日目录引言 11系统工艺过程及被控对象特征选择21.1 被控对象工艺过程21.2 被控对象特征描述42 仪表选择52.1过程检测和变送器选择52.2实施器选择62.2.1实施器选型72.2.2调整阀尺寸选择72.2.3调整阀流量特征选择72.3控制器仪表选择83.控制方案整体设定103.1控制方法选择103.2阀门特征及控制器选择103.3 控制系统仿真123.4 控制参数整定134 报警和紧急停车设计145 结论 156
2、体会16参考文件17引言 反应器是任何化学品生产过程中关键设备,决定了化工产品品质、品种和生产能力。釜式反应器是一个最为常见反应器,广泛应用于化工生产各个领域。釜式反应器有部分很关键过程参数,如:进料流量 (进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数控制至关关键,其不仅决定着产品质量和生产效率,也很大程度上决定了生产过程安全性。因为非线性和温度滞后原因很多,使得常规方法对釜式反应器控制效果不是很理想。本文以带搅拌釜式反应器温度作为工业生产被控对象,结合PID 控制方法,选择FX2N-PLC温度调整模块,同时为了提升系统安全性,设计了报警和紧急停车系统,最终设计了一套反应
3、釜氏温度过程控制系统。1系统工艺过程及被控对象特征选择1.1 被控对象工艺过程 本设计以工业常见带搅拌釜式反应器 (CSTR)为过程系统被控对象。反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm,反应器总容积0.903m,耐压2.5MPa。为安全起见,要求反应器在系统开、停车全过程中压力不超出1.5MPa。反应器压力报警上限组态值为1.2MPa。反应器工艺步骤图1-1所表示。图1-1 釜式反应器工艺步骤图该装置关键参数如表1-1所表示。各个阀门设备参数如表1-2所表示,其中,Dg为阀门公称直径、Kv为国际标准流通能力。 表1-1 关键测控参数表F4 反应物A 进料
4、流量729 kg/hF5 反应物B 进料流量1540 kg/hF6 催化剂C 进料流量88 kg/hF7 冷却水流量 (蛇管冷却)最大25 t/hF8 冷却水流量 (夹套冷却)最大42 t/hF9 反应物料混合液出口流量kg/hT1 反应温度P7 反应压力MPa (绝压)L4 反应器料位% (0-1.3m,0-100%)表1-2 设备参数表V4 反应物A 进料阀Dg25 Kv=3.42 (Cv=4)V5 反应物B 进料阀Dg25 Kv=5.38 (Cv=6.3)V6 催化剂C 进料阀Dg20 Kv=0.214 (Cv=0.25)V7 冷却水阀 (蛇管)Dg40 Kv=25.64 (Cv=30)
5、V8 冷却水阀 (夹套)Dg50 Kv=42.73 (Cv=50)V9 反应器出口阀Dg25 Kv=8.54 (Cv=10)S6 热水阀开、关两种状态S8 反应器搅拌电机开关开、关两种状态由图1-1能够看出,该被控对象反应过程为反应物A和反应物B在催化剂C作用下,在反应温度701.0发生反应,生成产物D。反应早期用热水诱发,当反应开始后由冷却水经过蛇管和夹套进行冷却。图1中,各参数含意以下:F4、F5 和F6 分别反应物A、B和催化剂 C 进料流量,V4、V5 和V6 分别是A、B和C进料阀。A为反应器内主产物D重量百分比浓度,反应温度为T1,液位为L4。反应器出口浆液流量为F9,由出口阀V9
6、控制其流量。出口泵及出口泵开关为S5。反应器出口为混合液,由产物D和未反应 A、B和催化剂C组成。F7为夹套冷却水入口流量,由阀V7进行控制。F8为蛇管冷却水入口流量,由阀V8 进行控制。另外,在反应早期,需要由反应器夹套加热热水来触发反应。该热水由开关阀S6引入。反应器搅拌电机开关为S8。 1.2 被控对象特征描述 本设计中被控对象关键是反应釜温度部分。因为被控对象有其特殊特征,直接影响着操纵变量和控制方案选择,所以对于被控变量特征分析显得尤为关键。下面就针对反应釜反应温度分析和描述。 该反应属于放热反应,放热反应属于非自衡危险过程,反应温度高将造成反应速度加紧,释放出热量造成反应温度深入升
7、高,温度快速升高同时,反应压力也会快速加大,从而有可能造成火灾或爆炸事故。所以有必需对反应温度加以控制,其关键手段是控制夹套和蛇管冷却水流量。冷却水流量改变随阀门开关改变较快、时间常数较小。当冷却水压力下降时 (这种干扰在现场时有发生),即使阀位不变,冷却水流量也会下降,冷却水带走热量降低,反应器中物料温度会上升。反应温度和反应转化率改变属于时间常数较大高阶特征。因为温度改变滞后,用常规控制器进行调整效果不佳。 2 仪表选择 温度控制系统关键由温度传感器、温度调整仪、实施装置、被控对象四个部分组成,其系统结构图图2.1所表示。图2-1 温度控制系统结构图 2.1过程检测和变送器选择过程检测是生
8、产过程自动控制系统关键组成部分。过程检测装置立即而正确把被控参数检测出来,并变成调整、控制装置可识别方法,作为过程控制装置判定生产过程依据。依据工业要求,为了含有较高精度,采取热电阻温度计。热电阻温度计广泛应用于-200600范围内温度测量。 用于制造热电阻材料,要求电阻率、电阻温度系数要大,热容量、热惯性要小,电阻和温度关系最好近于线性,另外,材料物理化学性质要稳定,复现性好,易提纯,同时价格廉价。热电阻选择能够依据表2-1确定: 表2-1 工业常见热电阻热电阻名称分度号0度时阻值(度)测温范围(度)特点铜电阻Cu50-50150线性好,价格低,适适用于无腐蚀性介质Cu50铂电阻Pt50-2
9、00500精度高,价格贵,适适用于中性和氧化性介质,但线性度差Pt100 由表2-1,依据釜内温度通常改变范围选择铂电阻,为提升检测精度采取三线制接法,图2-2所表示。采取三线制是为了消除连接导线电阻引发测量误差。这是因为测量热电阻电路通常是不平衡电桥。热电阻作为电桥一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻一部分,这一部分电阻是未知且随环境温度改变,造成测量误差。采取三线制,将导线一根接到电桥电源端,其它两根分别接到热电阻所在桥臂及和其相邻桥臂上,这么消除了导线线路电阻带来测量误差。所以工业上通常全部采取三线制接法。温度变送器我们选择DDZ-型温度变送器图2-3所表示。图2-
10、2 热电阻三线直接法 图2-3 变送器测量接线示意图其特点:(1)采取线性集成放大电路,使仪表正确性、可靠性、稳定性和其它指标均符合国家要求标准。(2)采取了通用模块和专用模块相结合设计方法,使用灵活、方便。(3)在和热电阻接入单元中,采取了线性化电路,从而确保了变送器输出信号和被测温度呈线性关系,大大方便了变送和系统配接。(4)采取了统一24V DC集中供电,变送器内无电源,实现了“三线制”接线方法。(5)采取了安全火花防爆方法,适适用于含有爆炸危险场所中温度或直流毫伏信号检测。2.2实施器选择 实施器是过程控制系统关键组成部分,其特征好坏直接影响系统控制质量。它接收控制器输出控制信号,并将
11、其转换为直线位移和角位移,操纵控制机构,自动改变操作变量,从而实现对过程变量自动控制。2.2.1实施器选型 本设计采取气动薄膜调整阀,其工作原理:当气室输入了0.020.10MPa信号压力以后,薄膜产生推力,使推力盘向下移动,压缩弹簧,带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座,从而使压缩空气流通。当信号压力维持一定时,阀门就维持在一定开度上。气动薄膜调整阀结构能够分为两部分,上面是实施机构,下面是调整机构。它关键由膜片、弹簧、推杆、阀芯、阀座等零部件组成。当来自控制器信号压力通入到薄膜气室时,在膜片上产生一个推力,并推进推杆部件向下移动,使阀芯和阀座之间空隙减小,流体受到阻力增大,流量减小
12、。推杆下移同时,弹簧受压产生反作用力,直到弹簧反作用力和信号压力在膜片上产生推力相平衡为止,此时,阀芯和阀座之间流通面积不再改变,流体流量稳定。出于安全原因,在此次设计中使用VBD气动端面密封蝶阀,VBD气动端面密封蝶阀是一个重量轻,结构简单后座式端面密封蝶阀。阀体、阀板均用钢板焊接或铸造加工而成。适适用于低压状态空气或其它气体流量、压力控制。气动实施器分气开和气关两种形式,有压力信号时阀关,无压力信号时阀开为气关式实施器;反之,则为气开式。它选择首先应依据调整器输出信号为零时使生产处于安全状态标正确定;其次,还应考虑是否有利于节能、是否有利于开车、停车等进行选择。最终,气开、气关选择关键是考
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反应 温度 过程 控制 优秀 课程设计
限制150内