相关性分析及回归分析演示幻灯片.ppt
《相关性分析及回归分析演示幻灯片.ppt》由会员分享,可在线阅读,更多相关《相关性分析及回归分析演示幻灯片.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、相关分析与回归分析1学习目标q相关分析、回归分析等数据处理与分析的方法。q掌握相关性分析理论及模型建立的方法q理解相关系数等参数的经济意义q掌握回归分析理论及模型建立的方法q理解拟合度等相关参数的意义qExcel学习重点qExcel中的数据分析工具q回归q相关系数2相关分析q相关分析是对两个变量之间线形关系的描述与度量q变量之间是否存在关系?q如果存在关系,他们之间是什么样的关系?q变量之间的关系强度如何?q样本所反映的变量之间的关系能否代表总体变量之间的关系?q相关分析步骤q绘制散点图判断变量之间的关系形态q如果是线形相关,可以用相关系数来度量两个变量之间的关系强度q对相关系数进行显著性检验
2、,以判断样本所反映的关系是否能用来代表两个变量总体上的关系。3散点图q通过图形方式对变量之间的关系形态进行大致的描述qA-正相关:一个变量增加或减少时,另一个变量也相应增加或减少;qB-负相关:一个变量增加或减少时,另一个变量却减少或增加;qC-非线性相关:变量之间的关系近似地表现为一条曲线;qD-无相关:说明两个变量是独立的,即由一个变量值,无法预测另一个变量值。(a)(b)(c)(d)4相关系数q相关系数:根据样本数据计算的两个变量之间线形相关程度的统计量,用符号“r来表示。5相关系数表示的意义q相关系数r是对两变量线性相关的测量,数值的范围从-1到0,到+1,表达变量间的相关强度。qr值
3、为+1表示两组数完全正相关qr值为-1表示两组数完全负相关,说明它们间存在反向关系,一个变量变大时另外一个就变小q当r值为0时表示两变量之间不存在线性关系q相关系数取值范围限于:rqExcel中计算相关系数有两种方法qExcel数据分析功能qCORREL()函数6加载“分析工具库”q文件/选项/Excel选项q加载项/分析工具库/Excel加载项/单击“跳转”q在加载宏对话框中勾选“分析工具库”7示例1-利用Excel数据分析计算相关系数q根据表中的数据计算不良贷款、贷款余额、累计应收贷款、贷款项目个数、固定资产投资额之间的相关系数q法1:数据/数据分析/相关系数/做如下图所示设置q可见,不良
4、贷款与各项贷款余额的相关性最高8示例1-利用Excel数据分析计算相关系数q法2-利用CORREL()函数也可以求出上述任意两个变量之间的相关系数q=CORREL(Array1,Array2)qarray1和array2为需要确定相关性的两组数据q两种方法的区别q方法1可以求出一批变量之间的相关系数q方法2只可以求出2个变量之间的相关系数回归分析q回归分析侧重考察变量之间的数量伴随关系,并通过建立变量之间的数学表达式将这种关系描述出来,进而确定一个或几个自变量的变化对另一个特定变量(因变量)的影响程度,从而由自变量的取值预测因变量的可能值。q从一组样本数据出发,确定变量之间的数学关系式。q对该
5、关系式的可信度进行各种统计检验,并从影响某一特定变量的诸多变量中找出哪些变量的影响是显著的,哪些是不显著的。q利用所求的关系式,根据一个或几个变量的取值来估计或预测另一个特定变量的取值,并给出这种估计或预测的可靠程度。q回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析。按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。10一元线形回归分析q回归基本上可视为一种拟合过程,即用最恰当的数学方程去拟合一组由一个因变量和一个或多个自变量所组成的原始数据。q最简单的形式是线性回归,它有一个因变量和一个自变量,因此就是用一个线性方程y=a+bx+去拟合一系列对变量x和y
6、的数据观察值的过程。11回归模型建立的步骤qq获取自变量和因变量的观测值;获取自变量和因变量的观测值;获取自变量和因变量的观测值;获取自变量和因变量的观测值;qq绘制绘制绘制绘制XYXY散点图,观察自变量和因变量之间是否存散点图,观察自变量和因变量之间是否存散点图,观察自变量和因变量之间是否存散点图,观察自变量和因变量之间是否存在线性关系;在线性关系;在线性关系;在线性关系;qq写出带未知参数的回归方程;写出带未知参数的回归方程;写出带未知参数的回归方程;写出带未知参数的回归方程;qq工具工具工具工具-数据分析数据分析数据分析数据分析-回归。回归。回归。回归。qq回归方程检验;回归方程检验;回
7、归方程检验;回归方程检验;qqR R2 2判断回归方程的拟合优度;判断回归方程的拟合优度;判断回归方程的拟合优度;判断回归方程的拟合优度;qqt t 统计量及相伴概率值,自变量与因变量之间的关系;统计量及相伴概率值,自变量与因变量之间的关系;统计量及相伴概率值,自变量与因变量之间的关系;统计量及相伴概率值,自变量与因变量之间的关系;qqF F统计量及相伴概率值,判断方程的回归效果显著性。统计量及相伴概率值,判断方程的回归效果显著性。统计量及相伴概率值,判断方程的回归效果显著性。统计量及相伴概率值,判断方程的回归效果显著性。qq进行预测。进行预测。进行预测。进行预测。12回归模型的检验qq判定系
8、数判定系数判定系数判定系数 R R2 2qq用来判断回归方程的拟合优度。用来判断回归方程的拟合优度。用来判断回归方程的拟合优度。用来判断回归方程的拟合优度。通常可以认为当通常可以认为当通常可以认为当通常可以认为当R R2 2大于大于大于大于0.90.9时,所时,所时,所时,所得到的回归直线拟合得较好,而当得到的回归直线拟合得较好,而当得到的回归直线拟合得较好,而当得到的回归直线拟合得较好,而当R R2 2小于小于小于小于0.50.5时,所得到的回归直时,所得到的回归直时,所得到的回归直时,所得到的回归直线很难说明变量之间的依赖关系。线很难说明变量之间的依赖关系。线很难说明变量之间的依赖关系。线
9、很难说明变量之间的依赖关系。qqt t 统计量统计量统计量统计量 qq如果对于某个自变量,其如果对于某个自变量,其如果对于某个自变量,其如果对于某个自变量,其t t统计量的统计量的统计量的统计量的P P值小于显著水平(或称置信值小于显著水平(或称置信值小于显著水平(或称置信值小于显著水平(或称置信度、置信水平),则可认为该自变量与因变量是相关的。度、置信水平),则可认为该自变量与因变量是相关的。度、置信水平),则可认为该自变量与因变量是相关的。度、置信水平),则可认为该自变量与因变量是相关的。qqF F 统计量统计量统计量统计量 qq如果如果如果如果F F统计量的统计量的统计量的统计量的P P
10、值小于显著水平(或称置信度、置信水平),则值小于显著水平(或称置信度、置信水平),则值小于显著水平(或称置信度、置信水平),则值小于显著水平(或称置信度、置信水平),则可认为方程的回归效果显著。可认为方程的回归效果显著。可认为方程的回归效果显著。可认为方程的回归效果显著。13示例2-一元回归分析示例q14散点图与趋势线q根据数据建立散点图q自变量放在X轴,因变量放在Y轴q简单线性拟合q添加趋势线(类型为“线性”),选定“显示公式”和“显示R2值”q得到趋势线(线性)方程和R215利用分析工具进行一元线形回归分析q加载宏分析工具库q数据数据分析回归q在“回归”对话框输入X值和Y值的区域q选择“标
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相关性 分析 回归 演示 幻灯片
限制150内