哥尼斯堡七桥问题PPT幻灯片课件.ppt
《哥尼斯堡七桥问题PPT幻灯片课件.ppt》由会员分享,可在线阅读,更多相关《哥尼斯堡七桥问题PPT幻灯片课件.ppt(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、哥尼斯堡七桥问题 1 哥尼斯堡七桥问题哥尼斯堡七桥问题 现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。现今的加里宁格勒,旧称哥尼斯堡,是一座历史名城。在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育在十八、十九世纪,那里是东普鲁士的首府,曾经诞生和培育过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学
2、家,古典唯心主义的创始人康过许多伟大的人物。著名的哲学家,古典唯心主义的创始人康德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步德,终生没有离开过哥尼斯堡一步!二十世纪最伟大的数学家之二十世纪最伟大的数学家之二十世纪最伟大的数学家之二十世纪最伟大的数学家之一,德国的希尔伯特也出生于此地一,德国的希尔伯特也出生于此地一,德国的希尔伯特也出生于此地一,德国的希尔伯特也出生于此地。2 哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯其境。在哥城景致迷人,碧波荡漾的普累格河,横贯
3、其境。在河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁河的中心有一座美丽的小岛。普河的两条支流,环绕其旁汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区汇成大河,把全城分为下图所示的四个区域:岛区(A)(A),东区东区东区东区(B)(B),南区,南区,南区,南区(C)(C)和北区和北区和北区和北区(D)(D)。3 著名的哥尼斯堡大学,傍倚于两条支流的河旁,著名的哥尼斯堡大学,傍倚于两条支流的河旁,使这一秀色怡
4、人的区域,又增添了几分庄重的韵味使这一秀色怡人的区域,又增添了几分庄重的韵味!有七座桥横跨普累格河及其支流,其中五座把河岸有七座桥横跨普累格河及其支流,其中五座把河岸和河心岛连接起来。这一别致的桥群,古往今来,和河心岛连接起来。这一别致的桥群,古往今来,吸引了众多的游人来此散步。吸引了众多的游人来此散步。4 n n 早在十八世纪以前,当地的居民便热衷于以早在十八世纪以前,当地的居民便热衷于以下有趣的问题:能不能设计一次散步,使得七座下有趣的问题:能不能设计一次散步,使得七座桥中的每一座都走过一次,而且只走过一次桥中的每一座都走过一次,而且只走过一次?这便是著名的哥尼斯堡七桥问题。这便是著名的哥
5、尼斯堡七桥问题。5 n n 这个问题后来变得有点惊心动魄:说是有一这个问题后来变得有点惊心动魄:说是有一队工兵,因战略上的需要,奉命要炸掉这七座桥。队工兵,因战略上的需要,奉命要炸掉这七座桥。命令要求当载着炸药的卡车驶过某座桥时,就得命令要求当载着炸药的卡车驶过某座桥时,就得炸毁这座桥,不许遗漏一座!炸毁这座桥,不许遗漏一座!6 如果有兴趣,完全可以照样子画一张地图,如果有兴趣,完全可以照样子画一张地图,亲自尝试尝试。不过,要告诉大家的是亲自尝试尝试。不过,要告诉大家的是,想把所想把所有的可能线路都试过一遍是极为困难的!因为有的可能线路都试过一遍是极为困难的!因为各种可能的线路有各种可能的线路
6、有=5040种。要想一一试过,种。要想一一试过,真是谈何容易。正因为如此,七桥问题的解答真是谈何容易。正因为如此,七桥问题的解答便众说纷纭:有人在屡遭失败之后,倾向于否便众说纷纭:有人在屡遭失败之后,倾向于否定满足条件的解答的存在;另一些人则认为,定满足条件的解答的存在;另一些人则认为,巧妙的答案是存在的,只是人们尚未发现而已,巧妙的答案是存在的,只是人们尚未发现而已,这在人类智慧所未及的领域,是很常见的事这在人类智慧所未及的领域,是很常见的事!7 拿起栓有拿起栓有15个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看个圆环的绳子,任选一个桥的支柱作为起点,沿桥依次套圈,看看是否可以让
7、除起点之外的是否可以让除起点之外的13个桥柱上都有一个圈。(起点的柱子上有两个圈)。个桥柱上都有一个圈。(起点的柱子上有两个圈)。结论是,不可能实现完成该任务。结论是,不可能实现完成该任务。8 n n 问题的魔力,问题的魔力,竟然吸引了天才竟然吸引了天才的欧拉的欧拉(Euler。1707-1783)。这。这位年轻的瑞士数位年轻的瑞士数学家,以其独具学家,以其独具的慧眼,看出了的慧眼,看出了这个似乎是趣味这个似乎是趣味几何问题的潜在几何问题的潜在意义。意义。9 公元公元1736年,年,29岁的欧拉向圣彼得堡科岁的欧拉向圣彼得堡科学院递交了一份题为学院递交了一份题为哥尼斯堡的七座桥哥尼斯堡的七座桥
8、的论文。论文的开头是这样写的:的论文。论文的开头是这样写的:“讨论长短大小的几何学分支,一直被人讨论长短大小的几何学分支,一直被人们热心地研究着。但是还有一个至今几乎完们热心地研究着。但是还有一个至今几乎完全没有探索过的分支。莱布尼兹最先提起过全没有探索过的分支。莱布尼兹最先提起过它,称之:它,称之:“位置的几何学位置的几何学”。这个几何学分。这个几何学分支讨论只与位置有关的关系,研究位置的性支讨论只与位置有关的关系,研究位置的性质;它不去考虑长短大小,也不牵涉到量的质;它不去考虑长短大小,也不牵涉到量的计算。但是至今未有过令人满意的定义,来计算。但是至今未有过令人满意的定义,来刻划这门位置几
9、何学的课题和方法刻划这门位置几何学的课题和方法”10 接着,欧拉运用他那娴熟的变换技巧,如同下接着,欧拉运用他那娴熟的变换技巧,如同下图,把哥尼斯堡七桥问题变为读者所熟悉的,简单图,把哥尼斯堡七桥问题变为读者所熟悉的,简单的几何图形的的几何图形的“一笔画一笔画”问题:即能否笔不离纸,一问题:即能否笔不离纸,一笔画但又不重复地画完以下的图形?笔画但又不重复地画完以下的图形?不难发现:右图中的点不难发现:右图中的点A、B、C、D,相当于,相当于七桥问题中的四块区域;而图中的弧线,则相当于七桥问题中的四块区域;而图中的弧线,则相当于连接各区域的桥。连接各区域的桥。11 12 想不到轰动一时的哥尼斯堡
10、七桥想不到轰动一时的哥尼斯堡七桥问题,竟然与孩子们的游戏,想用一问题,竟然与孩子们的游戏,想用一笔画画出笔画画出“串串字和字和“田田”字这类问题一字这类问题一样,而后者并不比前者更为简单样,而后者并不比前者更为简单!n 聪明的欧拉,正是在上述基础上,聪明的欧拉,正是在上述基础上,经过悉心研究,确立了著名的经过悉心研究,确立了著名的“一笔画一笔画原理原理”,从而成功地解决了哥尼斯堡七,从而成功地解决了哥尼斯堡七桥问题。桥问题。13 一笔画原理:一笔画原理:一个图如果可以一笔画成,那么这个图一个图如果可以一笔画成,那么这个图中奇数顶点的个数不是中奇数顶点的个数不是0就是就是2。14 15 下图画的
11、两只动物世界的庞然大物,都下图画的两只动物世界的庞然大物,都可以用一笔画完成。它们的奇点个数分别为可以用一笔画完成。它们的奇点个数分别为0和和2。这两张图选自。这两张图选自智力世界智力世界一刊,也算一刊,也算一种别有风趣的例子。一种别有风趣的例子。16 需要顺便提到的是:既然可由需要顺便提到的是:既然可由一笔画画成的脉络,其奇点个数应一笔画画成的脉络,其奇点个数应不多于两个,那么,两笔划或多笔不多于两个,那么,两笔划或多笔划能够画成的脉络,其奇点个数应划能够画成的脉络,其奇点个数应有怎样的限制呢?我想,聪明的读有怎样的限制呢?我想,聪明的读者完全能自行回答这个问题。者完全能自行回答这个问题。一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 尼斯 堡七桥 问题 PPT 幻灯片 课件
限制150内