离散型随机变量及其分布律PPT课件.ppt
《离散型随机变量及其分布律PPT课件.ppt》由会员分享,可在线阅读,更多相关《离散型随机变量及其分布律PPT课件.ppt(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一一、离散型随机变量的分布律离散型随机变量的分布律二二、常见离散型随机变量的概率分布常见离散型随机变量的概率分布三三、小结小结2.1 2.1 离散型随机变量及其分布律离散型随机变量及其分布律(2)(2)定定义义1 1 若若随随机机变变量量 X X 的的全全部部可可能能取取值值是是有有限限个个或或可可列列无无限限多多个个,则则称称这这种种随随机机变变量量为为离离散散型型随随机机变量。变量。一、离散型随机变量的分布律一、离散型随机变量的分布律定义定义2离散型随机变量的分布律也可表示为离散型随机变量的分布律也可表示为或或其中其中 分布函数分布函数分布律分布律离散型随机变量的分布函数离散型随机变量的分
2、布函数离散型随机变量分布函数离散型随机变量分布函数演示演示离散型随机变量分布律与分布函数的关系离散型随机变量分布律与分布函数的关系例例 1 抛掷均匀硬币抛掷均匀硬币,令令求随机变量求随机变量 X 的分布函数的分布函数.解解二、常见离散型随机变量的概率分布二、常见离散型随机变量的概率分布 设随机变量设随机变量 X 只可能取只可能取0与与1两个值两个值,它的分它的分布律为布律为2.两点分布两点分布1.退化分布退化分布若随机变量若随机变量X取常数值取常数值C的概率为的概率为1,即即则称则称X服从服从退化分布退化分布.实例实例1 “抛硬币抛硬币”试验试验,观察正、反两面情观察正、反两面情况况.随机变量
3、随机变量 X 服从服从(0-1)分布分布.其分布律为其分布律为则称则称 X 服从服从(0-1)分布分布或或两点分布两点分布.记为记为Xb(1,p)两点分布是最简单的一种分布两点分布是最简单的一种分布,任何一个只有任何一个只有两种可能结果的随机现象两种可能结果的随机现象,比如新生婴儿是男还是比如新生婴儿是男还是女、明天是否下雨、种籽是否发芽等女、明天是否下雨、种籽是否发芽等,都属于两点都属于两点分布分布.说明说明3.均匀分布均匀分布如果随机变量如果随机变量 X 的分布律为的分布律为实例实例 抛掷骰子并记出现的点数为随机变量抛掷骰子并记出现的点数为随机变量 X,则有则有均匀分布随机数均匀分布随机数
4、演示演示4.二项分布二项分布若若X的分布律为:的分布律为:称随机变量称随机变量X X服从参数为服从参数为n,pn,p的的二项分布二项分布。记为记为 ,其中其中q q1 1p p二项分布二项分布两点分布两点分布二项分布的图形二项分布的图形图形演示图形演示例如例如 在相同条件下相互独立地进行在相同条件下相互独立地进行 5 次射击次射击,每每次射击时击中目标的概率为次射击时击中目标的概率为 0.6,则击中目标的次则击中目标的次数数 X 服从服从 B(5,0.6)的二项分布的二项分布.二项分布随机数二项分布随机数演示演示4.泊松分布泊松分布 泊松资料泊松资料图形演示图形演示泊松分布的图形泊松分布的图形
5、泊松分布随机数泊松分布随机数演示演示泊松分布的背景及应用泊松分布的背景及应用二十世纪初罗瑟福和盖克两位科学家在观察二十世纪初罗瑟福和盖克两位科学家在观察与分析放射性物质放出的与分析放射性物质放出的 粒子个数的情况时粒子个数的情况时,他们做了他们做了2608 2608 次观察次观察(每次时间为每次时间为7.5 7.5 秒秒)发现发现放射性物质在规定的一段时间内放射性物质在规定的一段时间内,其放射的粒子其放射的粒子数数X X 服从泊松分布服从泊松分布.地震地震 在生物学在生物学、医学医学、工业统计、保险科学及工业统计、保险科学及公用事业的排队等问题中公用事业的排队等问题中,泊松分布是常见的泊松分布
6、是常见的.例如地震、火山爆发、特大洪水、交换台的电例如地震、火山爆发、特大洪水、交换台的电话呼唤次数等话呼唤次数等,都服从泊松分布都服从泊松分布.火山爆发火山爆发特大洪水特大洪水电话呼唤次数电话呼唤次数交通事故次数交通事故次数商场接待的顾客数商场接待的顾客数 在生物学在生物学、医学医学、工业统计、保险科学及工业统计、保险科学及公用事业的排队等问题中公用事业的排队等问题中,泊松分布是常见的泊松分布是常见的.例如地震、火山爆发、特大洪水、交换台的电例如地震、火山爆发、特大洪水、交换台的电话呼唤次数等话呼唤次数等,都服从泊松分布都服从泊松分布.泊松定理泊松定理证明证明二项分布二项分布 泊松分布泊松分
7、布n很大很大,p 很小很小上面我们提到上面我们提到单击图形播放单击图形播放/暂停暂停ESCESC键退出键退出 设设1000 辆车通过辆车通过,出事故的次数为出事故的次数为 X,则则可利用泊松定理计算可利用泊松定理计算所求概率为所求概率为解解例例2 有一繁忙的汽车站有一繁忙的汽车站,每天有大量汽车通过每天有大量汽车通过,设每辆汽车设每辆汽车,在一天的某段时间内出事故的概率在一天的某段时间内出事故的概率为为0.0001,在每天的该段时间内有在每天的该段时间内有1000 辆汽车通辆汽车通过过,问出事故的次数不小于问出事故的次数不小于2的概率是多少的概率是多少?6.几何分布几何分布 若随机变量若随机变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 离散 随机变量 及其 分布 PPT 课件
限制150内