2025八年级上册数数学(RJ)14.3.1 提公因式法2.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2025八年级上册数数学(RJ)14.3.1 提公因式法2.doc》由会员分享,可在线阅读,更多相关《2025八年级上册数数学(RJ)14.3.1 提公因式法2.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2025八年级上册数数学(RJ)14.3.1 提公因式法214.3 因式分解14.3.1 提公因式法 教学目标 1知识与技能 能确定多项式各项的公因式,会用提公因式法把多项式分解因式 2过程与方法 使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解 3情感、态度与价值观 培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值 重、难点与关键 1重点:掌握用提公因式法把多项式分解因式 2难点:正确地确定多项式的最大公因式 3关键:提公因式法关键是如何找公因式方法是:一看系数、二看字母公因式的系数取各项系数的最大公约数;字母
2、取各项相同的字母,并且各字母的指数取最低次幂 教学方法 采用“启发式”教学方法 教学过程 一、回顾交流,导入新知 【复习交流】 下列从左到右的变形是否是因式分解,为什么? (1)2x2+4=2(x2+2); (2)2t23t+1=(2t33t2+t); (3)x2+4xyy2=x(x+4y)y2; (4)m(x+y)=mx+my; (5)x22xy+y2=(xy)2 问题: 1多项式mn+mb中各项含有相同因式吗? 2多项式4x2x和xy2yzy呢? 请将上述多项式分别写成两个因式的乘积的形式,并说明理由 【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的
3、公因式是m,在4x2x中的公因式是x,在xy2yzy中的公因式是y 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法 二、小组合作,探究方法【教师提问】 多项式4x28x6,16a3b24a3b28ab4各项的公因式是什么? 【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂 三、范例学习,应用所学 【例1】把4x2yz12xy2z+4xyz分解因式 解:4x2y
4、z12xy2z+4xyz =(4x2yz+12xy2z4xyz) =4xyz(x+3y1) 【例2】分解因式,3a2(xy)34b2(yx)2 【思路点拨】观察所给多项式可以找出公因式(yx)2或(xy)2,于是有两种变形,(xy)3=(yx)3和(xy)2=(yx)2,从而得到下面两种分解方法 解法1:3a2(xy)34b2(yx)2 =3a2(yx)34b2(yx)2 =(yx)23a2(yx)+4b2(yx)2 =(yx)2 3a2(yx)+4b2 =(yx)2(3a2y3a2x+4b2) 解法2:3a2(xy)34b2(yx)2 =(xy)23a2(xy)4b2(xy)2 =(xy)2
5、 3a2(xy)4b2 =(xy)2(3a2x3a2y4b2) 【例3】用简便的方法计算:0.8412+120.60.4412 【教师活动】引导学生观察并分析怎样计算更为简便 解:0.8412+120.60.4412 =12(0.84+0.60.44) =121=12 【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同? 四、随堂练习,巩固深化 利用提公因式法计算: 0.5828.69+1.2368.69+2.4788.69+5.7048.69 五、课堂总结,发展潜能 1利用提公因式法因式分解,关键是找准最大公因式在找最大公因式时应注意
6、:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂 2因式分解应注意分解彻底,也就是说,分解到不能再分解为止 六、布置作业,专题突破 课本习题 板书设计 提公因式法1、提公因式法 例: 练习:143.2公式法第1课时运用平方差公式因式分解1理解平方差公式,弄清平方差公式的形式和特点(重点)2掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(难点)一、情境导入1同学们,你能很快知道9921是100的倍数吗?你是怎么想出来的?请与大家交流2你能将a2b2分解因式吗?你是如何思考的?二、合作探究探究点:运用平方差公式分解因式【类型一】 判定能否利用平方
7、差公式分解因式 下列多项式中能用平方差公式分解因式的是()Aa2(b)2 B5m220mnCx2y2 Dx29解析:A中a2(b)2符号相同,不能用平方差公式分解因式,错误;B中5m220mn两项都不是平方项,不能用平方差公式分解因式,错误;C中x2y2符号相同,不能用平方差公式分解因式,错误;D中x29x232,两项符号相反,能用平方差公式分解因式,正确故选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反【类型二】 利用平方差公式分解因式 分解因式:(1)a4b4;(2)x3y2xy4.解析:(1)a4b4可以写成(a2)2(b2)2的形式,这
8、样可以用平方差公式进行分解因式,而其中有一个因式a2b2仍可以继续用平方差公式分解因式;(2)x3y2xy4有公因式xy2,应先提公因式再进一步分解因式解:(1)原式(a2b2)(a2b2)(a2b2)(ab)(ab);(2)原式xy2(x2y2)xy2(xy)(xy)方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式分解因式必须进行到每一个多项式都不能再分解因式为止【类型三】 底数为多项式或单项式时,运用平方差公式分解因式 分解因式:(1)(ab)24a2;(2)9(mn)2(mn)2.解析:将原式转化为两个式子的平方差的形式后,运用平方差公式分解因式解:(1)原式(ab2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2025八年级上册数数学RJ14.3.1 提公因式法2 2025 年级 上册 数数 RJ 14.3 公因式
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内