高二物理-知识讲解机械振动 复习与随堂基础.doc





《高二物理-知识讲解机械振动 复习与随堂基础.doc》由会员分享,可在线阅读,更多相关《高二物理-知识讲解机械振动 复习与随堂基础.doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、机械振动 复习与巩固编稿:张金虎 审稿:代洪【学习目标】1通过观察和分析,理解简谐运动的特征。能用公式和图像描述简谐运动的特征。2通过实验,探究单摆的周期与摆长的关系。3知道单摆周期与摆长、重力加速度的关系。会用单摆测定重力加速度。4通过实验,认识受迫振动的特点。了解产生共振的条件以及在技术上的应用。【知识网络】【要点梳理】要点一、简谐运动 1定义 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。 表达式为:,是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是
2、简谐运动。 (1)简谐运动的位移必须是指偏离平衡位置的位移。也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。 (2)回复力是一种效果力,是振动物体在沿振动方向上所受的合力。 (3)“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态。) 要点诠释:简谐运动的位移大小和方向都是相对平衡位置来说的,是从平衡位置指向所在位置的矢量。 2几个重要的物理量间的关系 要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速
3、度v这四个矢量的相互关系。 (1)由定义知:,方向与位移方向相反。 (2)由牛顿第二定律知:,方向与方向相同。 (3)由以上两条可知:,方向与位移方向相反。 (4)和之间的关系最复杂:当同向(即同向,也就是反向)时一定增大; 当反向(即反向,也就是同向)时,一定减小。 3从总体上描述简谐运动的物理量 振动的最大特点是往复性或者说是周期性。因此振动物体在空间的运动有一定的范围,用振幅A来描述;在时间上则用周期来描述完成一次全振动所需的时间。 (1)振幅A是描述振动强弱的物理量。(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的) (2)周期T是描述振动快慢的物理
4、量。周期由振动系统本身的因素决定,叫固有周期。任何简谐运动都有共同的周期公式:(其中是振动物体的质量,是回复力系数,即简谐运动的判定式中的比例系数,对于弹簧振子k就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。 (3)频率也是描述振动快慢的物理量。周期与频率的关系是。 4表达式 ,其中A是振幅,是时的相位,即初相位或初相。 5简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越大。简谐运动的振幅不变,总的机械能守恒。 6简谐运动中路程和时间的关系 (1)若质点运动时间与周期的关系满足(),则成立要点诠释:不论计时起点对应
5、质点在哪个位置向哪个方向运动,经历一个周期就完成一次全振动,完成任何一次全振动质点通过的路程都等于。 (2)若质点运动时间与周期的关系满足(),则成立 (3)若质点运动时间与周期的关系满足,此种情况最复杂,分三种情形 计时起点对应质点在三个特殊位置(两个最大位移处,一个平衡位置),由简谐运动的周期性和对称性知,成立。 计时起点对应质点在最大位移和平衡位置之间,向平衡位置运动,则 计时起点对应质点在最大位移处和平衡位置之间,向最大位移处运动,则 (4)质点运动时间为非特殊值,则需要利用简谐运动的振动图象进行计算。简谐运动的位移、速度、加速度及对称性 (1)位移:方向为从平衡位置指向振子位置,大小
6、为平衡位置到该位置的距离。 位移的表示方法:以平衡位置为原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻振子(偏离平衡位置)的位移用该时刻振子所在位置的坐标来表示。振子通过平衡位置时,位移改变方向。 (2)速度:描述振子在振动过程中经过某一位置或在某一时刻运动的快慢。在所建立的坐标轴上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反。 振子在最大位移处速度为零,在平衡位置时速度最大,振子在最大位移处速度方向发生改变。 (3)加速度:根据牛顿第二定律,做简谐运动物体的加速度由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。 振子在位移最大处加速度最大,通过平衡位置时
7、加速度为零,此时加速度改变方向。 (4)简谐运动的对称性 瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系。另外速度、动量的大小具有对称性,方向可能相同或相反。 过程量的对称性:振动质点来回通过相同的两点间的时间相等,如;质点经过关于平衡位置对称的等长的两线段时时间相等,如,如图所示:要点诠释: 利用简谐运动的对称性,可以解决物体的受力问题,如放在竖直弹簧上做简谐运动的物体,若已知物体在最高点的合力或加速度,可求物体在最低点的合力或加速度。但要注意最高点和最低点合力或加速度的方向相反。 由于简谐运动有周期性,因此涉及简谐运动时,往往出现多解,分
8、析时应特别注意:物体在某一位置时,位移是确定的,而速度不确定;时间也存在周期性关系。要点二、简谐运动的图象1简谐运动的图象 以横轴表示时间,以纵轴表示位移,建立坐标系,画出的简谐运动的位移时间图象都是正弦或余弦曲线。2简谐运动的图象 (1)从平衡位置开始计时,函数表达式为,图象如图。 (2)从最大位移处开始计时,函数表达式,图象如图。 3振动图象的物理意义 表示振动物体的位移随时间变化的规律。4从图象中可以知道 (1)任一个时刻质点的位移 (2)振幅 (3)周期(4)速度方向:由图线随时间的延伸就可以直接看出 (5)加速度:加速度与位移的大小成正比,而方向总与位移方向相反。只要从振动图象中认清
9、位移(大小和方向)随时间变化的规律,加速度随时间变化的情况就迎刃而解了。 要点三、典型的简谐运动 1弹簧振子 (1)周期,与振幅无关,只由振子质量和弹簧的劲度系数决定。 (2)可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是。这个结论可以直接使用。 在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。 2单摆 (1)在一条不可伸长的、质量可以忽略的细线下拴一质点,上端固定,构成的装置叫单摆;当单摆的最大偏角小于时,单摆的振动近似为简谐运动。 (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大回复力越大,加速度
10、()越大,由于摆球的轨迹是圆弧,所以除最高点外,摆球的回复力并不等于合外力。 (3)单摆的周期:。在小振幅摆动时,单摆的振动周期跟振幅和振子的质量都没有关系。 3简谐运动的两种模型的比较弹簧振子单摆模型示意特点(1)忽略摩擦力,弹簧对小球的弹力提供回复力(2)弹簧的质量可忽略(1)细线的质量,球的直径均可忽略(2)摆角很小公式回复力(1)回复力(2)周期 【典型例题】类型一、简谐运动例1一弹簧振子做简谐运动,周期为( ) A若时刻和时刻振子运动位移的大小相等、方向相同,则一定等于的整数倍 B若时刻和时刻振子运动速度的大小相等、方向相反,则一定等于的整数倍 C若,则在时刻和时刻振子运动的加速度一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二物理-知识讲解 机械振动 复习与随堂 基础 物理 知识 讲解 复习

限制150内