高二数学-知识讲解 分类加法计数原理和分步乘法计数原理(基础)1227.doc
《高二数学-知识讲解 分类加法计数原理和分步乘法计数原理(基础)1227.doc》由会员分享,可在线阅读,更多相关《高二数学-知识讲解 分类加法计数原理和分步乘法计数原理(基础)1227.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、分类加法计数原理和分步乘法计数原理编稿:赵雷 审稿:李霞【学习目标】1理解分类加法计数原理和分步乘法计数原理 2理解分类加法计数原理和分步乘法计数原理的区别 3会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题【要点梳理】要点一:分类加法计数原理(也称加法原理)1分类加法计数原理:完成一件事,有类办法.在第1类办法中有种不同方法,在第2类办法中有种不同的方法,在第类办法中有种不同方法,那么完成这件事共有种不同的方法.2加法原理的特点是: 完成一件事有若干不同方法,这些方法可以分成n类; 用每一类中的每一种方法都可以完成这件事; 把每一类的方法数相加,就可以得到完成这件事的所有方
2、法数要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。3图示分类加法计数原理:由A到B算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。从图中可以看出,完成由A到B这件事,共有方法m+n种。要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。要点二、分步乘法计数原理1.分步乘法计数原理 “做一件事,完成它需要分成n个步骤”,就是说完成这件事的任何一种方法,都要分成n个步
3、骤,要完成这件事必须并且只需连续完成这n个步骤后,这件事才算完成2乘法原理的特点: 完成一件事需要经过n个步骤,缺一不可; 完成每一步有若干种方法; 把每一步的方法数相乘,就可以得到完成这件事的所有方法数要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。用分步乘法计数原理解题,按着这个模式施行就可以了,可简单地理解为:AB,
4、有m种方法;BC,有n种方法;AC,有mn种方法。要点三、分类计数原理和分步计数原理的区别:1分类计数原理和分步计数原理的区别:两个原理的区别在于一个和分类有关,一个和分步有关.完成一件事的方法种数若需“分类”思考,则这n类办法是相互独立的,且无论哪一类办法中的哪一种方法都能单独完成这件事,则用加法原理;若完成某件事需分n个步骤,这n个步骤相互依存,具有连续性,当且仅当这n个步骤依次都完成后,这件事才算完成,则完成这件事的方法的种数需用乘法原理计算2. 应用两个原理的分别要注意:若用分类计数原理,要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类计数原理,即加法原理求和得到总数;若用
5、分步计数原理,要做到步骤“完整”完成了所有步骤,恰好完成所有任务,当然步与步之间要相互独立分步后再计算每一步的方法数,最后根据分步计数原理,即乘法原理把完成每一步的方法数相乘得到总数要点四、分类计数原理和分步计数原理的应用1.利用两个基本原理解决具体问题时的思考程序:(1)首先明确要完成的事件是什么,条件有哪些?(2)然后考虑如何完成?主要有三种类型分类或分步。先分类,再在每一类里再分步。先分步,再在每一步里再分类,等等。(3)最后考虑每一类或每一步的不同方法数是多少?2.利用两个基本原理解决具体问题时的注意事项:(1)应用分类计数原理,应注意:分类时,要按一个标准来分,最忌采用双重或多重标准
6、分类;每一类中的每一种方法都可以独立地完成此任务;它的起点、终点就是完成这件事情的开始和结束;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏).(2)应用分步计数原理,应注意:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立; 只要有一步中所采取的方法不同,则对应的完成此事的方法也不同.3.利用两个基本原理解决具体问题时的方法技巧:利用两个基本原理解决具体问题,关键环节是分类或者分步。类与步的关系式辩证的。有些问题需要先分类,再在每一类里再分步;有些问题需要先分步,再在每一步里再分类,等等。到底采
7、用何种顺序分类与分步,要看类的趋势和步的趋势谁大谁小。下面用用流程图直观描述。(1)类中有步情形从A到B算作一件事的完成。完成这件事有两类办法,在第1类办法中有3步,在第2类办法中有2步,每步的方法数见箭线下面的mi,i=1,2,3,4,5。完成AB这件事,共有方法数为m1m2m3+m4m5。(2)步中有类情形从A到D算作完成一件事,简单地记为AD。完成AD这件事,需要经历三步,即AB,BC,CD。其中BC这步又分为三类,这就是步中有类。箭线下面的mi(i=1,2,3,4,5)表示相应步的方法数。完成AD这件事,共有方法数为m1(m2+m3+m4)m5。要点诠释: 对“类”与“步”的理解,要再
8、上一个层次,可进一步地理解为:“类”用“+”号连结,“步”用“”号连结,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可。 使用计数原理解题,大部分离不开分类。分类时,要按一个标准来分,最忌采用双重或多重标准分类。【典型例题】类型一、分类加法计数原理例1 2012届一名高中毕业生在填写高考志愿表中的第一批中的第一志愿(学校)和第一专业时了解到A、B两所大学各有一些自己感兴趣的专业,具体情况如下: 那么,这名同学不同的填法共有多少种? 【思路点拨】 由于这名同学在A、B两所大学中只能选择一所,而且只能选择一个专业,因此符合分类加法计数原理的条件 【解析】这名同学可以选择A、B两所大
9、学中的一所在A大学中有5种专业选择方法,在B大学中有4种专业选择方法因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种)【总结升华】 解决这类问题的关键是搞清分类还是分步举一反三:【变式1】书架上有不同的语文书10本,不同的英语书7本,不同的数学书5本,现从中任选一本阅读,不同的选法有( ) A22种 B350种 C32种 D20种【答案】应用分类加法计数原理:10+7+5=22(种),故选A。【变式2】从甲地到乙地,一天中,有火车2班,汽车3班,飞机2班,那么从甲地到乙地共有 种不同的走法。【答案】完成这件事,有三类方法:第一类是乘火车,有2种不同方法;第二类是乘汽车,有3种
10、不同方法;第三类是乘飞机,有2种不同方法。则完成这件事,依分类加法计数原理,共有N=2+3+2=7种不同方法。【变式3】如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有_个【答案】类型二、分步乘法计数原理例2. 设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?【思路点拨】选出一组参赛代表,可以分两个步骤第 l 步选男生第2步选女生【解析】第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择根据分步乘法计数原理,共有3024 =720种不同的选法【总结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学-知识讲解 分类加法计数原理和分步乘法计数原理基础1227 数学 知识 讲解 分类 加法 计数 原理 分步 乘法 基础 1227
限制150内