高二物理-知识讲解 简谐运动的回复力和能量、单摆 提高.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高二物理-知识讲解 简谐运动的回复力和能量、单摆 提高.doc》由会员分享,可在线阅读,更多相关《高二物理-知识讲解 简谐运动的回复力和能量、单摆 提高.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、简谐运动的回复力和能量、单摆编稿:张金虎 审稿:代洪 【学习目标】1掌握简谐运动的动力学特征,明确回复力的概念。2知道简谐运动是一种没有能量损耗的理想情况。3理解简谐运动过程中位移、回复力、加速度、速度、动能、势能的变化情况。4知道什么是单摆。5理解摆角很小时单摆的振动是简谐运动。6知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。【要点梳理】要点一、简谐运动的回复力、能量 1回复力物体振动时受到的回复力的方向总是指向平衡位置,即总是要把物体拉回到平衡位置的力称为回复力 要点诠释:(1)负号表示回复力的方向是与位移方向相反(2)为与的比例系数,对于弹簧振子,为劲度系数(
2、3)对水平方向振动的弹簧振子,回复力由弹簧的弹力提供;对竖直方向振动的弹簧振子,回复力由弹簧的弹力与重力两力的合力提供(4)物体做简谐运动到平衡位置时,回复力为(但合力可能不为)(5)回复力大小随时间按正弦曲线变化2简谐运动的能量 (1)弹簧振子运动的任意位置,系统的动能与势能之和都是一定的,即振动过程中机械能守恒 (2)水平方向的振子在平衡位置的机械能以动能的形式出现,势能为零;在位移最大处势能最大,动能为零 (3)简谐运动中系统的动能与势能之和称为简谐运动的能量,即。 (4)简谐运动中的能量跟振幅有关,振幅越大,振动的能量越大 (5)在振动的一个周期内,动能和势能间完成两次周期性变化,经过
3、平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小要点二、简谐运动的特征 1物体做简谐运动的三个特征 (1)振动图像是正弦曲线; (2)回复力满足条件;(3)机械能守恒2简谐运动的判定方法 (1)简谐运动的位移一时间图像是正弦曲线或余弦曲线 (2)故简谐运动的物体所受的力满足,即回复力与位移成正比且方向总相反(3)用判定振动是否是简谐运动的步骤: 对振动物体进行受力分析; 沿振动方向对力进行合成与分解;找出回复力,判断是否符合要点三、简谐运动的运动特点1简谐运动的加速度分析方法简谐运动是一种变加速的往复运动,由知其加速度周期性变化,“”表示加速度的方向与振动位移的方向相反,即总
4、是指向平衡位置,的大小跟成正比2简谐运动的运动特点物体位置位移回复力加速度速度势能动能方向大小方向大小方向大小方向大小平衡位置O最大位移处M 指向M指向O指向O指向M指向O指向O指向M指向M指向O指向O指向O 通过上表不难看出:位移、回复力、加速度三者同步变化,与速度的变化相反通过上表可看出两个转折点:平衡位置点是位移方向、加速度方向和回复力方向变化的转折点;最大位移处是速度方向变化的转折点还可以比较出两个过程的不同特点,即向平衡位置靠近的过程及远离平衡位置的过程的不同特点:靠近点时速度大小变大,远离点时位移、加速度和回复力大小变大 3弹簧振子在光滑斜面上的振动光滑斜面上的小球连在弹簧上,把原
5、来静止的小球沿斜面拉下一段距离后释放,小球的运动是简谐运动 分析如下:如图所示,小球静止时弹簧的伸长量为,往下拉后弹簧相对于静止位置伸长时,物体所受回复力 由此可判定物体是做简谐运动的要点四、单摆 1单摆单摆指在一条不可伸长的,又没有质量的线的下端系一质点所形成的装置单摆是实际摆的理想化的物理模型实际摆可视为单摆的条件:细线的质量与小球相比可以忽略,球的直径与线的长度相比也可以忽略 一个很轻的细线系着一个有质量的质点,这个模型叫做单摆在实验室里,如果悬挂物体的细线的伸缩和质量可以忽略,细线的长度比物体的直径大得多,这样的装置就叫做单摆 单摆做简谐运动的条件:小球摆到最高点时,细线与竖直方向的夹
6、角叫偏角偏角很小时,单摆做简谐运动2单摆做简谐运动的回复力 单摆做简谐运动的回复力是由重力沿圆弧切线的分力提供(不要误认为是摆球所受的合外力)当很小时,圆弧可以近似地看成直线,切线的分力可以近似地看做沿这条直线作用,这时可以证明 可见,在偏角很小的情况下,单摆振动时回复力跟位移成正比而方向相反,是简谐运动3单摆的周期公式 荷兰物理学家惠更斯发现在偏角很小的情况下,单摆的周期跟摆长的平方根成正比,跟重力加速度的平方根成反比,而跟摆球的质量和振幅无关,即 式中为悬点到摆球球心间的距离,为当地的重力加速度(1)单摆的等时性:往振幅较小时,单摆的周期与单摆的振幅尤天,单摆的这种性质叫单摆的等时性(2)
7、单摆的周期公式:由简谐运动的周期公式,对于单摆,所以周期为的单摆,叫做秒摆,由周期公式得秒摆的摆长要点五、单摆的应用1单摆的应用 (1)计时器:利用单摆周期与振幅无关的等时性,制成计时仪器,如摆钟等由单摆周期公式知道,调节单摆摆长即可调节钟表快慢 (2)测定重力加速度:把单摆周期公式变形,得由此可知,只要测出单摆的摆长和振动周期,就可以测出当地的重力加速度。 2如何理解单摆的周期公式(1)等效摆长:摆长是指摆动圆弧的圆心到摆球重心的距离,而不是一定为摆线的长如图中,摆球可视为质点,各段绳长均为,甲、乙摆球做垂直纸面的小角度摆动,丙摆球在纸面内做小角度摆动,为垂直纸面的钉子,而且,则各摆的周期为
8、 甲:等效摆长, 乙:等效摆长, 丙:摆线摆到竖直位置时,圆心就由变为,摆球振动时,半个周期摆长为,另半个周期摆长为,即为,则单摆丙的周期为。 (2)等效重力加速度,不一定等于 由单摆所在的空间位置决定由知,随所在地球表面的位置和高度的变化而变化,高度越高,的值就越小,另外,在不同星球上也不同 同一单摆,在不同的地理位置上,由于重力加速度不同,其周期也不同 同一单摆,在不同的星球上,其周期也不相同例如单摆放在月球上时,由于地,所以同一单摆在月球上的周期比在地球上的周期大,但是水平弹簧振子不受变化的影响而改变周期 还由单摆系统的运动状态决定,如单摆处在向上加速的升降机中,设加速度为,则摆球处于超
9、重状态,沿圆弧的切向分力变大,则重力加速度的等效值,若升降机加速下降,则重力加速度的等效值单摆若在轨道上运行的卫星内,摆球完全失重,回复力为零,等效值,摆球不摆动了,周期无穷大若摆球在摆动过程中突然完全失重,则摆球将以那时的速率相对悬点做匀速圆周运动 一般情况下,的值等于摆球相对于加速系统静止在平衡位置时,摆球所受的张力与摆球质量的比值即3圆锥摆如图所示,用细线悬吊小球,使小球在水平面内做匀速圆周运动,即细线所扫过的面为圆锥面,通常我们称为圆锥摆,实质上圆锥摆中的小球不是振动,是匀速圆周运动 设运动过程中细线与竖直方向夹角为,线长为,则小球做圆周运动的半径,向心力由,得圆锥摆的周期显然该周期小
10、于单摆周期,所以在用单摆测重力加速度的实验中,强调摆球必须在竖直面内摆动 4摆钟快慢问题的分析方法 摆钟是单摆做简谐运动的一个典型应用,其快慢不同是由摆钟的周期变化引起的,分析时应注意: (1)由摆钟的机械构造所决定,摆钟每完成一次全振动。摆钟所显示的时间为一定值,也就是走时准确的摆钟的周期。 (2)在摆钟机械构造不变的前提下,走时快的摆钟,在给定时间内全振动的次数多,周期小,钟面上显示的时间快走时慢的摆钟,在给定时间内全振动的次数少,周期大,钟面上显示的时间就慢因钟面显示的时间总等于摆动次数乘以准确摆钟的周期,即,所以在同一时间内,钟面指示时间之比等于摆动次数之比 (3)无论摆钟走时是否准确
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二物理-知识讲解 简谐运动的回复力和能量、单摆 提高 物理 知识 讲解 简谐运动 回复 能量 单摆
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内