2022高三总复习教案正弦、余弦的图象和性质.doc
《2022高三总复习教案正弦、余弦的图象和性质.doc》由会员分享,可在线阅读,更多相关《2022高三总复习教案正弦、余弦的图象和性质.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正弦、余弦的图象和性质编稿:李霞 审稿:孙永钊【考纲要求】1、会用“五点法”画出正弦函数、余弦函数的简图;熟悉基本三角函数的图象、定义域、值域、奇偶性、单调性及其最值;理解周期函数和最小正周期的意义.2、理解正弦函数、余弦函数在区间的性质(如单调性、最大和最小值、与轴交点等),理解正切函数在区间的单调性.【知识网络】应用三角函数的图象与性质正弦函数的图象与性质余弦函数的图象与性质正切函数的图象与性质【考点梳理】考点一、“五点法”作图在确定正弦函数在上的图象形状时,最其关键作用的五个点是,考点二、三角函数的图象和性质名称定义域值 域图象奇偶性奇函数偶函数奇函数单调性单调增区间:()单调减区间:
2、)单调增区间:()单调减区间: ()()单调增区间:()周期性对称性对称中心: ,对称轴: ,对称中心:,对称轴: , 对称中心:,对称轴:无最值时,;时, 时,;时,无要点诠释:三角函数性质包括定义域、值域、奇偶性、单调性、周期性、最大值和最小值、对称性等,要结合图象记忆性质,反过来,再利用性质巩固图象三角函数的性质的讨论仍要遵循定义域优先的原则,研究函数的奇偶性、单调性及周期性都要考虑函数的定义域研究三角函数的图象和性质,应重视从数和形两个角度认识,注意用数形结合的思想方法去分析问题、解决问题.考点三、周期一般地,对于函数,如果存在一个不为0的常数,使得当取定义域内的每一个值时,都有,那么
3、函数就叫做周期函数,非零常数叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).要点诠释:应掌握一些简单函数的周期:函数或的周期; 函数的周期;函数的周期;函数的周期.【典型例题】类型一、定义域及值域例1. 求下列函数的值域:(1) (2)(3) (4) 【思路点拨】(1)(4)利用两角和公式对函数解析式化简整理,进而根据正弦函数的性质求出函数的最大值及最小值,注意自变量的取值范围. (2)根据角的范围得出sinx的范围,运用换元配方后求出y的最大值及最小值,进而得出函数的值域(3)解析式利用二倍角的正弦公式化简后求值域;【解析】(1),当,即时,;当
4、,即时,. (2), 令:,则为增函数;.(3)根据可知,故函数的值域为.(4),由知,由正弦函数的单调性可知,故函数的值域为.【总结升华】形如或,可根据的有界性来求最值;形如或可看成关于的二次函数,但也要注意它与二次函数求最值的区别,其中;形如可化为(其中)的形式来确定最值.举一反三:【变式1】已知且,求函数的值域.【解析】,且,且,由正切函数的单调性可知或,故函数的值域为.【变式2】已知的定义域为,求的定义域.【解析】中,中,解得,的定义域为:.【变式3】求函数的最大值及相应的的值【解析】若,当,时,函数有最大值; 若,当,时,函数有最大值【变式4】函数的值域是 【解析】,显然,由解得,故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 高三总 复习 教案 正弦 余弦 图象 性质
限制150内